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Abstract

Signed graphs have been used frequently to model affect ties for
social actors. In this context, structural balance theory has been used
as a theory for the organization and form of these relations. Based
on a graph theoretical formalization of this theory, for signed graphs,
there are theorems stating that balanced structures have clear parti-
tioned forms. We discuss the use of local optimization procedures as
a method of obtaining these partitioned structures – or partitioned
structures that are as close to a balanced partition as possible for
structures that are not balanced. In addition, this method provides a
measure of the extent to which a signed graph is imbalanced. For a
time series of signed graphs, this permits a test of the balance hypoth-
esis that human groups tend towards balance over time. Examples are
provided of interpersonal ties in networks and institutionalized rela-
tions among collective units.

Since the pioneering work of Heider (1946) there has been an enduring
concern with theories of structural balance. See, for example, Taylor (1970)
and Forsythe (1990). Central to this formulation is the idea of triads made
up of two actors, p and q, and some object, x. There is a direct social relation
between the two actors and there are unit formation links between the actors
and the object. The set of such triads is displayed in Figure 1.

The relation between the actors can be positive (for example, liking)
or negative (disliking) and the unit formation relations can be positive (for
example, approve) or negative (disapprove).
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Four Balanced Triadic Configurations

Four Imbalanced Triadic Configurations

Figure 1: Triadic Configurations.

Definition 1 A triad is balanced if the product of the signs that it contains
is positive and is unbalanced when the product of its signs is negative.

The structures in the top row of Figure 1 are all balanced while those
in the second row are imbalanced.1 Heider’s key substantive insight is that
people prefer balanced configurations to those that are imbalanced. For
Heider, x can be another person, an event, an idea or a thing. Of interest
here is the formalization of Heider’s version of this theory by Cartwright and
Harary (1956). In their formalization, the distinction between direct affect
ties and unit formation ties was deleted – a reasonable step if the ’object’
can include other people. Indeed, the most frequent use of structural balance
ideas is when p, q and x are all social actors – in which case, o is used as a
label for the third social actor.

1As we use them, the terms imbalanced and unbalanced are interchangeable.
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1 Signed Graphs and Structural Balance

Cartwright and Harary (1956) used graphs and digraphs to formalize struc-
tural balance ideas.

Definition 2 A signed digraph is an ordered pair, (G, σ), where (Batagelj,
1994:56):

• G = (V,R) is a digraph, without loops, having a set of vertices, V , and
a set of arcs, R ⊑ V × V ;
and

• σ : R → {+1,−1} is a sign function. The positive arcs are assigned to
+1 while the negative arcs are assigned to −1.

Clearly, such an assignment can be made for each of the triads shown
in Figure 1. However, Cartwright and Harary extended the consideration of
triads to include cycles and semicycles of any length.

Definition 3 A cycle (semicycle) is positive if the product of the signs of its
edges (arcs) is positive and negative if the product of the signs of its edges
(arcs) is negative.

Definition 4 A signed graph (digraph) is balanced if all of its cycles (semi-
cyles) are positive.

In terms of these definitions, Cartwright and Harary (1956: 286) proved
the, so-called, structure theorem:

Theorem 1 If a signed graph (digraph) is balanced, then the set of vertices,
V , can be partitioned into two subsets, called plus-sets, such that all of the
positive edges (arcs) are between vertices within a plus-set and all negative
edges (arcs) are between vertices in different plus-sets.

This result is illustrated on the left side of Figure 2 where the graph on
the left is balanced while the graph on the right is not. On the left, the plus
sets are {a, c} and {b, d}. The positive edge between a and c links vertices
in {a, c} and the other positive edge, between b and d, links vertices within
{b, d}. The negative edges, between a and b and between c and d, link vertices
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Figure 2: Two Undirected Signed Graphs (left) and A 3-Balanced Undirected
Signed Graph (right).

in different plus sets. For the graph on right, the presence of the positive
edge between a and d, means that the graph is not balanced. The triads
{a, b, d} and {a, c, d} are both negative and there is no partition consistent
with the structure theorem.

Consider next the graph shown on the right side of Figure 2, one that is
not balanced in the above sense. In terms of triads (or 3-cycles) it is clear
that {b, e, f} and {d, e, h} are both negative. Thus there is no partition into
two plus-sets that is consistent with Theorem 1. Yet, viewing the structure,
there is a clear partition. There is one subset, {a, b, c, d}, and another subset,
{f, g, h, i}, that are plus-sets with only negative edges between them. And
both of these subsets have negative edges with e. It seems reasonable, then,
to think in terms of partitioning the vertices of a graph into more than two
plus-sets. (In the imagery of human groups, the graph on the right side
of Figure 2 describes two subgroups with internal positive ties and external
negative ties plus another individual that is disliked by some members of
each of the subgroups.) For the classical concept of structural balance there
are two plus sets and we can label this as 2-balance. For the graph on the
right side of Figure 2 we can talk of 3-balance where there are 3 plus-sets
where all of the positive lines are within plus-sets and all of the negative
lines are between plus-sets. This can be extended to a concept of k-balance
in an obvious way with k the number of plus-sets in the partition of nodes.
In effect, Davis (1967: 183) pursued this line of thought and established:

Theorem 2 A signed graph (digraph) is k-balanced if and only if it contains
no semicycles with exactly one negative edge (arc).
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For structural balance, the all negative triad is defined as imbalanced.
Davis argued that it is just as reasonable to declare this as balanced. When
this done, the structure Theorem 1 becomes the more general structure the-
orem 2. We label ’balance’ for Theorem 2 as ’generalized balance’ (i.e. for
k > 2) and reserve ’structural balance’ for k = 2.

The psychological balance theories claim that the (network) structures
are either balanced or move towards a state of balance. For the latter case,
measures of imbalance are needed if we want to trace movement towards
balance. Two types of measures exist. One is couched in terms of cycles
while the other is defined in terms of edges (or arcs). For cycles, if C(G)
is the total number of cycles in G and C+(G) is the number of positive

cycles, then imbalance is measured as
(

1− C+(G)
C(G)

)

(Cartwright and Harary,

1956: 288). Variations of this basic definition consider also the length of the
cycles. Cycles beyond a certain length can be ignored or cycles can have
(inverse) weights depending on their lengths. If we focus attention on edges
(arcs), another type of measure of imbalance is the number of links that are
inconsistent with the balance partition. For structural balance (Harary et
al., 1965: 348), it is the number of links, imb, that have to change sign in
order to create a balanced graph (and sign changes for all proper subsets of
the links contributing to imb do not do so.)2 We will use imb as a measure
of imbalance for both structural and generalized balance.

2 Partitioning Signed Graphs

The structure theorems are stated for signed graphs that are balanced (for
either structural or generalized balance). They are existance theorems and
are silent about the composition of the plus-sets. For imbalanced graphs they
have no relevance. Yet most empirical structures are not balanced. Doreian
and Mrvar (1995) have proposed a method for obtaining clusters as close
to balance (in either sense) as possible together with a minimized value of
criterion function stated in terms of imb.

Let N be the number of negative ties (edges or arcs) that link directly
vertices in the same plus-set. Similarly, let P be the number of positive

2Another definition of imbalance is the number of edges that must be removed in order
to create a balanced graph and is termed an edge-deletion measure. Harary et al. (1965)
prove that the edge-deletion measure is the same as the sign change measure.
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ties that link vertices in different plus-sets. The obvious criterion function
is N + P and we seek partitions that minimize this value. The clustering
problem is this: determine the clustering C∗ for which

P (C∗) = min
C∈Φ

P (C)

where C is a clustering of a given set of actors, V , Φ is the set of all possible
clusterings and P : Φ → ℜ is a criterion function3 where ℜ = N + P . A
slightly more general criterion function is

ℜ = αN + (1− α)P

where 0 ≤ α ≤ 1. For α = 0.5, both types of error are weighted equally.
With 0 ≤ α < 0.5, positive errors are more important while, for 0.5 < α ≤ 1,
negative errors are more important. Here, we focus on the case where α = 0.5.

Consider the graph shown on the right side of Figure 2. If we consider
partitions into 2 plus-sets, there are three such partitions, all with the mini-
mum error of 2 (with α = 0.5). These partitions are

{a, b, c, d, e}, {f, g, h, i}
{a, b, c, d}, {f, g, h, i, e}
{a, b, c, d, f, g, h, i}, {e}
The permuted and partitioned matrix corresponding to the first of these

partitions is shown on the left side of Table 1.
The ties that contribute to the error are the negative links between b

and e and between d and e. If the second partition is considered, the ties
contributing to the error are the negative ties between e and f and between
e and h. For the third partition, the ties contributing to the error do not
involve e. Instead, they are the negative ties between b and f and between d

and h. In general, we can expect that there will be more than one partition
with a minimum number of errors and that, depending of the partitions
identified, different sets of links can be identified as being inconsistent with
a form of k-balance. However, there are cases where a partition is unique.
Such a case is the partition of the graph shown on the right side of Figure 2
into three plus-sets where there are no ties inconsistent with 3-balance (the
minimized value of the criterion is 0). The partition is shown on the right
side of Table 1.

3This criterion function is simply imb.
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Table 1: Partitioned matrices of the graph on the right side of Figure 2.

a b c d e f g h i

a . 1 1 . . . . . .
b 1 . . 1 -1 -1 . . .
c 1 . . 1 . . . . .
d . 1 1 . -1 . . -1 .
e . -1 . -1 . -1 . -1 .

f . -1 . . -1 . 1 1 .
g . . . . . 1 . . 1
h . . . -1 -1 1 . . 1
i . . . . . . 1 1 .

a b c d e f g h i

a . 1 1 . . . . . .
b 1 . . 1 -1 -1 . . .
c 1 . . 1 . . . . .
d . 1 1 . -1 . . -1 .

e . -1 . -1 . -1 . -1 .

f . -1 . . -1 . 1 1 .
g . . . . . 1 . . 1
h . . . -1 -1 1 . . 1
i . . . . . . 1 1 .

The local optimization procedure is a relocation procedure. It starts
with the specification of the number of clusters for the partition. A random
partition into the given number of clusters is then generated. Following this,
vertices can be moved from one cluster to another or pairs of vertices can be
interchanged between clusters. For each such change, the criterion function is
evaluated. If a relocating change leads to a decrease of the criterion function,
the new partition is retained and the process continues until the criterion
function cannot be lowered. This is repeated for many random starts and
the partitions with the lowest value of ℜ are retained. We select the smallest
value of the criterion function across all values of k. As noted above, there
may be multiple partitions with the same minimized value of the criterion
function. See Doreian and Mrvar (1995) for further details.

We now illustrate this partitioning procedure with some empirical exam-
ples.
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Parrado

Turcatti

Delgado

Canessa Vizintin

Mangino

Group

1 2 3 4 5 6 7
Parrado 1 0 1 0 0 0 0 0
Turcatti 2 1 0 0 0 0 0 0
Delgado 3 0 0 0 0 0 0 0
Canessa 4 0 0 0 0 1 0 0
Vizintin 5 0 0 0 1 0 0 0
Mangino 6 0 0 0 1 1 0 0
Group 7 1 1 -1 -1 -1 0 0

Figure 3: Directed Signed Graph for Andes Survivors.

3 Empirical Examples

3.1 Human Groups

3.1.1 Andes Survival Group

Read (1974) describes a sequence of events following a aeroplane crash high
in the Andes mountains. A rugby team was traveling on the plane when
it went down and, with the flight crew killed, the survivors had to fend for
themselves. The pattern of relationships among the survivors changed during
the ordeal. Forsyth (1990: 126) presents some sociometric information in the
form a signed graph. This is displayed in Figure 3 together with the data
matrix. There are six named actors plus the ”other group members”. For the
purpose of this demonstration, we consider the remaining actors as ’group’
in a single node.

The structure of the graph is simple – indeed, one could do the partitoning
analysis by hand. There is one plus-set of {Parrado, Turcatti, Group}, an-
other with {Canessa, Vizintin, Mangino} and a singleton {Delgado}. Stated
in this form, the example has an exact 3-balance partition. Clearly, it is
possible to group {Delgago} with {Canessa, Vizintin, Mangino} for an exact
2-balance partition. These are shown in Table 2. Both partitions are exactly
balanced and, of the two, the 3-balance solution seems the best as Delgado
has no positive ties with any of the other actors.

We next consider a more complicated example where there are no exactly
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Table 2: Exact 2-Balanced and 3-Balanced Partitions of the Andes Survival
Group.

Actor id 1 2 7 3 4 5 6

Parrado 1 . 1 . . . . .
Turcatti 2 1 . . . . . .
Group 7 1 1 . -1 -1 -1 .

Delgado 3 . . . . . . .
Canessa 4 . . . . . 1 .
Vizintin 5 . . . . 1 . .
Mangino 6 . . . . 1 1 .

Actor id 1 2 7 3 4 5 6

Parrado 1 . 1 . . . . .
Turcatti 2 1 . . . . . .
Group 7 1 1 . -1 -1 -1 .

Delgado 3 . . . . . . .

Canessa 4 . . . . . 1 .
Vizintin 5 . . . . 1 . .
Mangino 6 . . . . 1 1 .

k-balanced partitions and there are enough actors so that a visual examina-
tion is of little value. Here, some algorithm is needed to get partitions as
close to k-balance and a measure of imbalance.

3.1.2 Sampson Monastery Data

The Sampson (1968) monastery data have been used frequently as a test
bed for network analytic procedures, a usage that we continue. Sampson
obtained network data for a variety of ties (likes, esteems, influences and
sanctions) through time for a group of young men undergoing training in a
monastery. While the full study had four time periods, only the last three,
labeled T2, T3 and T4, had the same set of actors. Doreian and Mrvar (1995)
considered these time points. Here, we consider only the liking relation and
T2. For both the positive and negative citations, Sampson asked the trainee
monks to rank order these like and dislike ties. A citation of +3 goes to the
most liked actor while a citation of −3 goes to the most disliked other actor.4

These data are shown in Table 3.
If these ties are binarized to put the data in a form compatible with

Definition 2, we get the data as shown in Table 4. (We report the analysis
of the valued data shortly.) When the partitioning procedure discussed in

4As is clear from inspecting the table, not all of the monks in training conformed with
this request. Bonaventure and Romuald, for example, have no negative ties among their
nominations.
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Table 3: Valued Affect Ties in the Sampson Monastery Data at T2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 JohnBosco 0 0 2 0 3 -2 -1 0 0 -3 0 0 0 1 0 0 0 0
2 Gregory 3 0 0 0 0 0 2 0 0 -1 0 0 -3 1 0 0 -2 0
3 Basil 2 3 0 -1 0 0 0 -3 -2 0 0 0 0 0 0 0 1 0
4 Peter 0 0 -2 0 3 1 -3 0 0 2 0 0 0 0 0 0 0 -1
5 Bonaventure 0 0 0 3 0 0 0 0 0 0 2 0 1 0 0 0 0 0
6 Berthold 1 0 0 3 0 0 -3 -1 2 0 0 -2 0 0 0 0 0 0
7 Mark 0 2 0 -3 -1 -2 0 1 0 0 0 0 0 0 0 3 0 0
8 Victor 3 2 -3 0 0 0 0 0 1 0 0 0 0 -2 0 0 -1 0
9 Ambrose 0 0 -3 0 2 0 0 3 0 0 0 0 0 0 0 1 -2 -1

10 Romuald 0 0 0 3 0 0 0 1 0 0 0 0 0 2 0 0 0 0
11 Louis 0 0 -1 0 3 0 0 1 0 0 0 0 -3 2 0 0 -2 0
12 Winfrid 3 2 -1 -3 0 0 0 0 0 0 -2 0 0 1 0 0 0 0
13 Amand 0 -3 0 0 2 -2 1 0 0 0 0 -1 0 0 0 0 0 3
14 Hugh 3 0 0 0 0 0 0 -2 0 0 1 2 -3 0 2 0 -1 0
15 Boniface 3 2 -2 0 0 0 0 0 0 0 0 0 -3 1 0 0 -1 -1
16 Albert 1 2 0 0 0 0 3 0 0 0 0 0 -1 0 0 0 -3 -2
17 Elias 0 0 3 -3 -2 0 0 0 0 0 -1 0 2 0 0 0 0 1
18 Simplicius 2 3 0 -3 0 -2 1 0 0 0 0 0 0 0 0 -1 0 0

Section 2 is used for these data, the partition with the lowest value of the
criterion function is the one shown in Table 5.

The same procedure can be applied to the valued data of Table 3 if
we assume that the rank scores (-3, -2, -1, 1, 2, 3) can be summed. The
criterion function ℜ can be computed by summing ranks. When this is done,
the partition shown in Table 6 results. A comparison of the two partitions,
in terms of which actors belong to the identified plus-sets, shows that they
are identical.

Doreian and Mrvar (1995) repeated the analysis, using the valued data,
for the other time points. The values obtained for each time point for par-
titions with up to five clusters are shown in Table 7. It is clear that the
smallest value of the criterion function is for the 3-cluster partitions and
that this value declines through time. We note also that the measure for
structural balance (the 2-cluster partitions) declines in the same fashion. As
such, and concluded by Doreian and Mrvar, this provides strong support for
the substantive balance hypothesis.5

5This does need to be qualified as the data were collected retrospectively. Also, for T4

there are two partitions having the minimized value of the criterion function.
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Table 4: Binary Affect Ties in the Sampson Monastery Data at T2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 JohnBosco 0 0 1 0 1 -1 -1 0 0 -1 0 0 0 1 0 0 0 0
2 Gregory 1 0 0 0 0 0 1 0 0 -1 0 0 -1 1 0 0 -1 0
3 Basil 1 1 0 -1 0 0 0 -1 -1 0 0 0 0 0 0 0 1 0
4 Peter 0 0 -1 0 1 1 -1 0 0 1 0 0 0 0 0 0 0 -1
5 Bonaventure 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
6 Berthold 1 0 0 1 0 0 -1 -1 1 0 0 -1 0 0 0 0 0 0
7 Mark 0 1 0 -1 -1 -1 0 1 0 0 0 0 0 0 0 1 0 0
8 Victor 1 1 -1 0 0 0 0 0 1 0 0 0 0 -1 0 0 -1 0
9 Ambrose 0 0 -1 0 1 0 0 1 0 0 0 0 0 0 0 1 -1 -1

10 Romuald 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0
11 Louis 0 0 -1 0 1 0 0 1 0 0 0 0 -1 1 0 0 -1 0
12 Winfrid 1 1 -1 -1 0 0 0 0 0 0 -1 0 0 1 0 0 0 0
13 Amand 0 -1 0 0 1 -1 1 0 0 0 0 -1 0 0 0 0 0 1
14 Hugh 1 0 0 0 0 0 0 -1 0 0 1 1 -1 0 1 0 -1 0
15 Boniface 1 1 -1 0 0 0 0 0 0 0 0 0 -1 1 0 0 -1 -1
16 Albert 1 1 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 -1 -1
17 Elias 0 0 1 -1 -1 0 0 0 0 0 -1 0 1 0 0 0 0 1
18 Simplicius 1 1 0 -1 0 -1 1 0 0 0 0 0 0 0 0 -1 0 0

Table 5: Plus-set Partition (for k = 3) of the Actors at T2 for Binary Ties.

Actor id 1 2 7 12 14 15 16 3 13 17 18 4 5 6 8 9 10 11
John Bosco 1 . . -1 . 1 . . 1 . . . . 1 -1 . . -1 .
Gregory 2 1 . 1 . 1 . . . -1 -1 . . . . . . -1 .
Mark 7 . 1 . . . . 1 . . . . -1 -1 -1 1 . . .
Winfrid 12 1 1 . . 1 . . -1 . . . -1 . . . . . -1
Hugh 14 1 . . 1 . 1 . . -1 -1 . . . . -1 . . 1
Boniface 15 1 1 . . 1 . . -1 -1 -1 -1 . . . . . . .
Albert 16 1 1 1 . . . . . -1 -1 -1 . . . . . . .
Basil 3 1 1 . . . . . . . 1 . -1 . . -1 -1 . .
Amand 13 . -1 1 -1 . . . . . . 1 . 1 -1 . . . .
Elias 17 . . . . . . . 1 1 . 1 -1 -1 . . . . -1
Simplicius 18 1 1 1 . . . -1 . . . . -1 . -1 . . . .
Peter 4 . . -1 . . . . -1 . . -1 . 1 1 . . 1 .
Bonaventure 5 . . . . . . . . 1 . . 1 . . . . . 1
Berthold 6 1 . -1 -1 . . . . . . . 1 . . -1 1 . .
Victor 8 1 1 . . -1 . . -1 . -1 . . . . . 1 . .
Ambrose 9 . . . . . . 1 -1 . -1 -1 . 1 . 1 . . .
Romuald 10 . . . . 1 . . . . . . 1 . . 1 . . .
Louis 11 . . . . 1 . . -1 -1 -1 . . 1 . 1 . . .
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Table 6: Plus-set Partition (for k=3) of the Actors at T2 for Valued Ties.

Actor id 1 2 7 12 14 15 16 3 13 17 18 4 5 6 8 9 10 11
John Bosco 1 . . -1 . 1 . . 2 . . . . 3 -2 . . -3 .
Gregory 2 3 . 2 . 1 . . . -3 -2 . . . . . . -1 .
Mark 7 . 2 . . . . 3 . . . . -3 -1 -2 1 . . .
Winfrid 12 3 2 . . 1 . . -1 . . . -3 . . . . . -2
Hugh 14 3 . . 2 . 2 . . -3 -1 . . . . -2 . . 1
Boniface 15 3 2 . . 1 . . -2 -3 -1 -1 . . . . . . .
Albert 16 1 2 3 . . . . . -1 -3 -2 . . . . . . .
Basil 3 2 3 . . . . . . . 1 . -1 . . -3 -2 . .
Amand 13 . -3 1 -1 . . . . . . 3 . 2 -2 . . . .
Elias 17 . . . . . . . 3 2 . 1 -3 -2 . . . . -1
Simplicius 18 2 3 1 . . . -1 . . . . -3 . -2 . . . .
Peter 4 . . -3 . . . . -2 . . -1 . 3 1 . . 2 .
Bonaventure 5 . . . . . . . . 1 . . 3 . . . . . 2
Berthold 6 1 . -3 -2 . . . . . . . 3 . . -1 2 . .
Victor 8 3 2 . . -2 . . -3 . -1 . . . . . 1 . .
Ambrose 9 . . . . . . 1 -3 . -2 -1 . 2 . 3 . . .
Romuald 10 . . . . 2 . . . . . . 3 . . 1 . . .
Louis 11 . . . . 2 . . -1 -3 -2 . . 3 . 1 . . .

Table 7: Values of Criterion Function for Number of Clusters and Time.

Clusters T2 T3 T4

1 48.5 48.0 47.0

2 21.5 16.0 12.5

3 17.5 11.0 10.5

4 19.0 13.5 12.5

5 20.5 16.0 15.0
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The partition is the same for each time point and is largely consistent with
the partition identified by Sampson and obtained via blockmodeling all of the
(stacked) ties (Breiger et al. (1975)). John Bosco, Gregory, Mark, Winfrid,
Hugh, Boniface and Albert are the Young Turks. Sampson identified Basil,
Simplicius and Elias as the Outcasts. The generalized balance partition
includes Amand with them. Part of the ethnography provided by Sampson
suggests that Amand belongs here as he publically supported Basil in an
election and cast the only vote for Basil in the subsequent voting. The pattern
of ties in the partitioned matrix support this location. The remaining actors
belong to the Loyal Opposition identified by Sampson. When the partition
identified by Sampson is used as the start point, it yields a higher imb score
than for the partition shown in Table 7, suggesting that this partition does
not have the best fit to the data.

3.2 Institutionalized Signed Structures

3.2.1 Clans and Subclans of Kaluana

We turn now to examine two examples drawn from anthropological sources.
Both concern arrangements found in the Highlands of New Guinea. Young
(1971) provides an example of exchange relations where there are positive
and negative ties among clans or major clan segments for the Kaluana. The
data come from the discussion of Hage and Harary (1991: 53). There are
nine units as shown in Figure 4 with the matrix of ties on the right. While
there are no balanced partitions for 2-balance, there is one such partition
for 3-balance. This partition is obvious from Figure 4 and is described in
Table 8.

3.2.2 Gahuku-Gama Subtribes of Highland New Guinea

Next, we consider a more complicated example. Read (1954) provides data
and an extensive discussion of some of the cultures of highland New Guinea.
A focus of his discussion was a set of political alliances and oppositions among
the Gahuku-Gama sub-tribes. The alliances and oppositions depicted by
Read are shown in Figure 5. These tribes are distributed in a particular area
and engage in prolonged warfare. ”Warfare ... is that activity which charac-
terizes the tribes of the Gahuku-Gama as a whole and which differentiates

13
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Clan 1 2 3 4 5 6 7 8 9
1 Mulina I 0 1 0 0 0 0 0 0 -1
2 Mulina II 1 0 -1 0 -1 0 0 0 0
3 Ainaona 0 -1 0 1 0 0 1 0 -1
4 Malabuabua 0 0 1 0 1 0 0 -1 0
5 Foloyai 0 -1 0 1 0 0 0 0 -1
6 Lulavile I 0 0 0 0 0 0 1 -1 -1
7 Lulavile II 0 0 1 0 0 1 0 0 -1
8 Nouneya 0 0 0 -1 0 -1 0 0 1
9 Iwaoyana -1 0 -1 0 -1 -1 -1 1 0

Figure 4: Kuluana example.

Table 8: Plus-set Partition for the Kaluana Example.

Clans
Clan id 1 2 3 4 5 6 7 8 9
Mulina I 1 . 1 . . . . . . -1
Mulilna II 2 1 . -1 . -1 . . . .
Ainaona 3 . -1 . 1 . . 1 . -1
Malabuabua 4 . . 1 . 1 . . -1 .
Foloyai 5 . -1 . 1 . . . . -1
Lulavile I 6 . . . . . . 1 -1 -1
Lulavile II 7 . . 1 . . 1 . . -1
Nouneya 8 . . . -1 . -1 . . 1
Iwaoyana 9 -1 . -1 . -1 -1 -1 1 .
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Figure 5: Gahuku-Gama Subtribes of Highland New Guinea.

them from groups in other socio-geographic regions” (1954: 39). ”Traditional
enemies were separated by only a few miles. Scattered raids and organized,
concerted attacks were constantly expected” (1954: 22). This is an institu-
tionalized form of warfare that is expected to continue indefinately. As such,
it is a quite stable arrangement.

Read’s account points out that there is an element of expediency in some
of the political arrangements and some positive ties are broken (and presume-
ably some new negative ties are created). The whole system is stable with
only minor changes at any time point. These minor changes do not change
the basic structure of the system. Consistent with balance theory, such sta-
bility should be close to balance – but not necessarily in terms of structural
balance. When these ties were examined, the partition with the lowest value
of the criterion function is for 3-balance and is shown in Table 9. The values
of the criterion function is 2. A closer examination of the distribution of ties
reveals that all of the ties contributing to the criterion function are associated
with subtribe G. Read’s account emphasises a condition of universal warfare
and that all of the tribes are warlike. Yet subtribe G has only positive links
(to some of the other tribes). This suggests that G is an unusual subtribe
worthy of further attention or that there may be some errors in the data.
In either interpretation, the partitioning method has located something of
interest. See also the discussion of Hage and Harary (1983).
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Table 9: Plus-set Partition for 3-Balance for Gahuku-Gama Example.

Subtribe id 1 2 14 15 3 4 6 7 9 11 12 5 8 10 13 16
A 1 . 1 1 1 -1 -1 -1 . . . -1 -1 . . . .
B 2 1 . 1 1 -1 . -1 . . . . -1 -1 -1 . .
N 14 1 1 . 1 . . . . . -1 -1 -1 -1 -1 -1 .
O 15 1 1 1 . . . -1 . . -1 -1 -1 . . -1 -1
C 3 -1 -1 . . . 1 1 1 1 . . . . . . .
D 4 -1 . . . 1 . . . 1 . . . . . . .
F 6 -1 -1 . -1 1 . . 1 1 1 1 . -1 . -1 .
G 7 . . . . 1 . 1 . 1 1 1 1 . . 1 .
I 9 . . . . 1 1 1 1 . 1 1 . . . . -1
K 11 . . -1 -1 . . 1 1 1 . 1 . -1 -1 -1 .
L 12 -1 . -1 -1 . . 1 1 1 1 . . . . . -1
E 5 -1 -1 -1 -1 . . . 1 . . . . 1 . . 1
H 8 . -1 -1 . . . -1 . . -1 . 1 . 1 1 .
J 10 . -1 -1 . . . . . . -1 . . 1 . 1 .
M 13 . . -1 -1 . . -1 1 . -1 . . 1 1 . 1
P 16 . . . -1 . . . . -1 . -1 1 . . 1 .

3.3 Discussion

We have provided a general method for partitioning signed graphs in terms of
k-balance. These partitions are those as close as is possible to exact balance
and the method provides a measure of imbalance, for any value of k, for
a signed graph (network). The set of ties inconsistent with a particular k-
balance are identified also6. For k = 2 we have traditional structural balance
and for k > 2 we have a generalized balance. This method can be used for
all signed graphs and is general. For empirical analyses of social networks
(Section 3.1) or institutionalized networks (Section 3.2) it is likely that the
values of k will be quite small. In the examples considered, k was never
greater than 3. Other examples are considered in Doreian, Batagelj and
Ferligoj (1995). For the empirical examples considered thus far, some ideas
meriting further attention include:

• Institutionalized signed networks are closer to a balanced state com-
pared to networks of individuals.

• For human groups and systems the relevant values of k are small.

6Of course, if there are multiple partitions with the same minimized value of the crite-
rion function, the identified links are not unique.
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• When the ties that are inconsistent with balance, for any value of k,
by far, the positive ties between plus-sets are far more numerous than
negative ties within plus-sets. This suggests that the negative ties
within plus-sets are far more costly and are unlikely to be tolerated. In
contrast, positive ties between plus sets seem like idiosyncratic events
that can be tolerated. (They may even prove useful in conflict reduction
efforts.)

• The characterization of a graph (network) that is made with regard
to balance using this method is of a macro-level property of the graph
(network). Doreian and Mrvar (1995) argue that the links identified as
inconsistent with balance need not be the ones that change over time.
Characterizing the mechanisms for such changes is an open problem.
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