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Abstract

One goal of blockmodeling is to reduce a large, potentially incoherent
network to a smaller comprehensible structure that can be interpreted more
readily. Batagelj, Doreian, and Ferligoj developed a generalized approach
to blockmodeling and methods where a set of observed relations are fitted
to a pre-specified blockmodel. In the paper this generalized blockmodeling
approach as implemented in program Pajek is described. An overview of
the blockmodeling procedures in Pajek is given and is illustrated by some
examples.

1 Introduction

Blockmodeling has been a main focus of network analysts (Hummon and Carley,
1993) with position as a central concept (Borgatti and Everett, 1992). Blockmodel-
ing seeks to cluster units which have substantially similar patterns of relationships
with others, and interpret the pattern of relationships among clusters.

Pajek is a program designed for the analysis of large networks (Batagelj and
Mrvar, 1998, 2002, 2003, 2004). Initially generalized blockmodeling, as developed
by Batagelj, Doreian, and Ferligoj, was supported by two programs Model and
Model2 (Batagelj, 1996). To provide additional support for analysis of smaller parts
of large networks the authors of Pajek - Batagelj and Mrvar - decided to include
also some procedures for generalized blockmodeling into Pajek. These procedures
are time consuming and therefore can be applied only to the networks of moderate
size (up to some hundreds).

The aim of the paper is to provide an overview of the blockmodeling proce-
dures implemented in Pajek together with some examples. The basic blockmodeling
procedures in Pajek are described in detail in the monograph Exploratory Network

Analysis with Pajek (de Nooy, Mrvar, and Batagelj, 2004). An extended discussion
of generalized blockmodeling can be found in the monograph Generalized Block-

modeling (Doreian, Batagelj, and Ferligoj, 2004). Here, only the main ideas and
procedures for generalized blockmodeling are given and the basic knowledge of how
to use Pajek is assumed.
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2 Basic definitions

Let us start with some basic definitions.
Let U = {X1, X2, . . . , Xn} be a finite set of units. The units are related by a

binary relation

R ⊆ U × U

which determine a network

N = (U, R)

The relation R can be also described by a corresponding binary matrix R = [rij]n×n

where

rij =

{

1 XiRXj

0 otherwise

In some applications rij can be a nonnegative real number expressing the strength
of the relation R between units Xi and Xj .

The goal of blockmodeling is to identify, in a given network, clusters of units that
share structural characteristics defined in terms of R. The units within a cluster
have the same or similar connection patterns to other units. They form a clustering

C = {C1, C2, . . . , Ck}

which is a partition of the set of units U :

⋃

i

Ci = U

i 6= j ⇒ Ci ∩ Cj = ∅

As we know from the mathematics: each partition determines an equivalence
relation; and conversely: each equivalence relation determines a partition. A clus-
tering C partitions the relation R into blocks

R(Ci, Cj) = R ∩ Ci × Cj

Each such block consists of units belonging to clusters Ci and Cj and all arcs leading
from cluster Ci to cluster Cj . If i = j, a block R(Ci, Ci) is called a diagonal block.

A blockmodel consists of structures obtained by identifying all units from the
same cluster of the clustering C. For an exact definition of a blockmodel we have to
be precise also about which blocks produce an arc in the reduced graph and which
do not. The reduced graph can be presented also by its relational matrix, called the
image matrix.

The goal of blockmodeling is to reduce a large, potentially incoherent network
to a smaller comprehensible structure that can be interpreted more readily. Block-
modeling, as an empirical procedure, is based on the idea that units in a network
can be grouped according to the extent to which they are equivalent, according to
some meaningful definition of equivalence.
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Figure 1: Ideal blocks for structural equivalence.

3 Equivalences

In general, and without surprise, different definitions of equivalence lead to dis-
tinct partitions. Lorrain and White (1971) introduced the first equivalence called
structural equivalence. Later White and Reitz (1983) defined regular equivalence.

3.1 Structural equivalence

Units are structurally equivalent if they are connected to the rest of the network in
identical ways (Lorrain and White, 1971).

Formally: X and Y are structurally equivalent (in the matrix form: Xi ≡ Xj) iff
s1. XRY ⇔ Y RX

s2. XRX ⇔ Y RY

s3. ∀Z ∈ U \ {X, Y } : (XRZ ⇔ Y RZ)
s4. ∀Z ∈ U \ {X, Y } : (ZRX ⇔ ZRY )

s1’. rij = rji

s2’. rii = rjj

s3’. ∀k 6= i, j : rik = rjk

s4’. ∀k 6= i, j : rki = rkj

The matrix form of the definition of structural equivalence can be extended also
to the case where rij are real numbers.

From the definition of structural equivalence it follows that there are four possible
ideal blocks (Batagelj, Ferligoj, and Doreian, 1992): null (all 0) block and complete

(all 1) block; and for diagonal blocks also null block with 1’s on the diagonal and
complete block with 0’s on the diagonal. They are presented in Figure 1.

3.2 Regular equivalence

Intuitively, two units are regularly equivalent if they are equally connected to equiv-
alent others (White and Reitz, 1983).

The equivalence relation ≈ on U is a regular equivalence on network N = (U, R)
iff for all X, Y, Z ∈ U , X ≈ Y implies both

R1. XRZ ⇒ ∃W ∈ U : (Y RW ∧ W ≈ Z)
R2. ZRX ⇒ ∃W ∈ U : (WRY ∧ W ≈ Z)
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Figure 2: Ideal blocks for regular equivalence.

Batagelj, Doreian, and Ferligoj (1992) proved that regular equivalence produces
two types of blocks: null blocks and 1-covered blocks (which have in each row and
in each column at least one 1). They are presented in Figure 2.

3.3 Generalized concepts of equivalence

An appropriate generalization of the equivalence idea is one where each block, of
a particular partition, is free to conform to a different equivalence idea. This led
Batagelj (1997) and Doreian, Batagelj, and Ferligoj (1994) to the definition of several
types of connection inside and between the clusters, or in another words, different
types of ideal blocks. Some of them are presented in Table 1. All these types of
blocks are implemented in Pajek. For a given partition they can be used also for
large networks (Operations/ Shrink Network/ Partition).

4 Establishing blockmodels

The problem of establishing a partition of a network in terms of a considered equiv-
alence is a special case of clustering problem that can be formulated as an opti-
mization problem: determine the clustering C∗ for which

P (C∗) = min
C∈Φ

P (C)

where C is a clustering of a given set of units or units U , Φ is the set of all possible
clusterings and P : Φ → IR the criterion function. The criterion function must
reflect the considered equivalence.

Criterion function can be constructed

• indirectly as a function of a compatible (dis)similarity measure between pairs
of units, or

• directly as a function measuring the fit of real blocks induced by a given
clustering to the corresponding ideal blocks with perfect relations within each
cluster and between clusters according to the considered types of connections
(equivalence).
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Table 1: Generalized types of blocks.

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Null

0 1 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 1 0

Row-Dominant

0 0 1 0 0
0 0 1 1 0
1 1 1 0 0
0 0 1 0 1

Col-Dominant

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Complete

0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0

Row-Functional

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

Col-Functional

0 1 0 0 0
1 0 1 1 0
0 0 1 0 1
1 1 0 0 0

Regular

0 1 0 0 0
0 1 1 0 0
1 0 1 0 0
0 1 0 0 1

Row-Regular

0 1 0 1 0
1 0 1 0 0
1 1 0 1 1
0 0 0 0 0

Col-Regular

4.1 The Indirect approach

In the indirect approach the most important requirement is that the selected dis-
similarity measure is compatible with the considered equivalence (Batagelj, Ferligoj,
and Doreian, 1992). The dissimilarity measure d is compatible with a considered
equivalence ∼ if for each pair of units holds

Xi ∼ Xj ⇔ d(Xi, Xj) = 0

Not all dissimilarity measures used in applications are compatible with structural
equivalence. For example, the corrected Euclidean-like dissimilarity

d(Xi, Xj) =

√

√

√

√

√

(rii − rjj)2 + (rij − rji)2 +

n
∑

s=1

s 6=i,j

((ris − rjs)2 + (rsi − rsj)2)

where each unit is described by the vector composed of the corresponding row and
column of relational matrix, is compatible with structural equivalence.

The indirect clustering approach does not seem suitable for establishing cluster-
ings in terms of regular equivalence since there is no evident way how to construct
a compatible (dis)similarity measure.
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Figure 3: Example network – borrowing learning material (left), dendrogram (right).

In Pajek, the corrected Euclidean-like dissimilarity and several others (Batagelj,
Ferligoj, and Doreian, 1992) can be found (Operations/Dissimilarity). Also, a
hierarchical agglomerative procedure is implemented with several clustering meth-
ods (Net/Hierarchical Decomposition/Clustering/Options): minimum, maxi-
mum, average, general, Ward and Ward2.

4.2 An Example of the Indirect approach

The blockmodeling procedures implemented in Pajek are demonstrated on a stu-
dent network. It consists of 15 undergraduate students attending lectures on Social
network analysis at Faculty of Social Sciences, University of Ljubljana (2002). Stu-
dents were asked: from whom would you borrow learning materials. The number of
choices was not limited. The obtained network is presented on the left side of Fig-
ure 3. Circles represent girls with squares representing boys. Bidirectional arcs are
replaced by edges. The layout was obtained by the Kamada-Kawai spring embedder
procedure implemented in Pajek.

Using the Corrected Euclidean-like dissimilarity and the Ward clustering method
we obtain the dendrogram presented on the right side of Figure 3.

In the indirect approach, the dendrogram is used to help identify the number
of clusters in a partition. Using the dendrogram to select three clusters we get the
partition presented on the left side of Figure 4. (If we had chosen two clusters,
then the second pair of clusters would have been merged.) The partition into three
clusters is shown using greyscale (white, gray and black vertices).

The obtained partition can also be used to reorder rows and columns of the
matrix representing the network. Clusters are delimited using vertical and horizontal
lines (see the right side of Figure 4).
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Figure 4: Indirect approach – partition into three clusters (left), reordered matrix

(right).

4.3 The Direct approach

The second possibility for establishing blockmodels is to construct an appropri-
ate criterion function directly and then use a optimization algorithm to obtain a
clustering solution. Criterion function P (C) has to be sensitive to the considered
equivalence:

P (C) = 0 ⇔ C defines considered equivalence.

One of the possible ways of constructing a criterion function that directly reflects
the considered equivalence is the following one: given a clustering C = {C1, C2, . . . , Ck},
let B(Cu, Cv) denote the set of all ideal blocks corresponding to block R(Cu, Cv).
Then the global error of clustering C can be expressed as

P (C) =
∑

Cu,Cv∈C

min
B∈B(Cu,Cv)

d(R(Cu, Cv), B)

where the term d(R(Cu, Cv), B) measures the difference (error) between the block
R(Cu, Cv) and the corresponding ideal block B. The function d has to be compatible
with the selected type of equivalence.

It seems that most of the clustering problems obtained using the direct approach
are NP-hard. To solve them we can use one of the local optimization procedures
(Batagelj, Doreian, and Ferligoj 1992). In Pajek the relocation algorithm is imple-
mented:

Determine the initial clustering C;
while in the neighborhood of the current clustering C

there exists a clustering C′ such that P (C′) < P (C)
do move to clustering C′ .

The neighborhood in this local optimization procedure is determined by the following
two transformations:



462 Vladimir Batagelj et al.

• moving a unit Xk from cluster Cp to cluster Cq (transition);

• interchanging units Xu and Xv from different clusters Cp and Cq (transposi-

tion).

In Pajek the direct approach is available through the menu option Operations/

Blockmodeling. Two suboptions are available. In the first one the initial partition
is randomly generated by Pajek. In the second one the initial partition has to be
given by the user or obtained by some other approach (e.g., by indirect approach). In
Pajek structural equivalence and regular equivalence are available as options while
a generalized equivalence can be specified by selecting the option User Defined.
In each cell of the given image matrix the user can specify the allowed types of
blocks. The number of repetitions of the local optimization procedure should be
also specified by the user.

4.4 Example of the direct approach

The clustering into three clusters of undergraduate students obtained by the direct
approach and assuming structural equivalence is exactly the same as the one ob-
tained by indirect approach above. The solution has 28 inconsistencies with a perfect
structural equivalence partition. This is minimized value of the magnitude of the cri-
terion function. It is determined as a part of the procedure and is used as a measure
of fit. The command sequence is given by (Operations/Blockmodeling/Random
Start). This leads to a dialogue box in which the equivalence type, the number of
clusters, and the number of repetitions are selected.

5 Fitting a pre-specified blockmodel

So far the inductive approaches for establishing blockmodels for a given relation
defined over a set of units were considered. Some form of equivalence is specified
and clusterings are sought that are consistent with a specified equivalence. Nothing
else is specified.

Another view of blockmodeling is deductive in the sense of starting with a block-
model that is specified in terms of substance prior to an analysis. Batagelj, Ferligoj,
and Doreian (1998) presented methods where a set of observed relations are fitted
to a pre-specified blockmodel. See also Doreian, Batagelj,and Ferligoj (2004) for an
extended discussion of specifying and fitting a variety of pre-specified blockmodels.
Given a network, a set of types of ideal blocks, and a reduced model, a solution
(partition) can be determined which minimizes the criterion function. It is also
possible to fit the network to a partial model and analyze the residual afterward; or
to introduce different constraints on the model. For example: units X and Y are of
the same type (in the same cluster); or, types of units X and Y are not connected.

In Pajek the pre-specified blockmodel can be described by specifying the cells of
image matrix (option User Defined). Additional constraints can also be specified
but not in a user friendly way using special model files (Batagelj, 1996).
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5.1 Example - prespecified block model

In the case of the student network we can consider a core-periphery model: there
are diligent students (the core group) with good learning materials and there are
less motivated students (the periphery group) who borrow studying material from
the students in core group and not from students in their own group. Therefore,
our pre-specified blockmodel is:

C1 C2

C1 com, reg -
C2 com, reg -

In the table com stands for complete block, reg stands for regular block, and -

stands for null block.
Using the local optimization algorithm implemented in Pajek we obtained the

partition into two clusters presented on the left side of Figure 5. The corresponding
reordered matrix is presented on the right side of the figure.
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Figure 5: Prespecified blockmodeling – core-periphery (left), reordered matrix (right).

Using Pajek the following image matrix and error matrix with an inconsistency
score of 5 were obtained:

C1 C2

C1 reg -
C2 reg -

C1 C2

C1 0 3
C2 0 2

The obtained model fits the network very well: there are 5 inconsistencies in the
blocks that were supposed to be null and no inconsistencies in the regular blocks.
Although we have used a single network for illustrative purposes, we emphasize that
we do not intend a direct comparison of the solutions obtained. We used structural
equivalence merely to illustrate the direct and indirect methods. In this section our
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focus is on pre-specifying blockmodels. Although we prefer the latter model it is not

because the number of inconsistencies is smaller. (Indeed, if we use regular equiva-
lence, select two clusters and use the direct approach, we obtain the same partition
with the same count of inconsistencies. Also, structural equivalence is stringent
and higher inconsistency counts are expected with such models. Comparisons of
inconsistency counts across different types of blockmodels are inappropriate.) Our
preference is grounded in the idea of specifying something specific about the struc-
ture of the blockmodel and testing it. (It is possible to fit a 3-cluster core-periphery
model - but as the substantive interpretation is the same, we stay with the simpler
2-cluster model.)

The obtained results are:

• Each student from the core group can find at least one student from the core
group from whom (s)he can borrow learning material.

• Each student from the core group is asked from at least one student of the
core group for the learning material.

• Each student from the periphery group can borrow learning material from at
least one student from the core group.

• Each student from the core group is asked from at least one student from the
periphery group for the learning material.
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Figure 6: Ranked-clusters blockmodels: Network (left), shrunk network (right).

5.2 Examples of Ranked-Clusters Models

The ideas behind the ranked-clusters model are outlined in Doreian, Batagelj, and
Ferligoj (2000), together with the closely related idea of the cyclic-acyclic decom-
position of networks. Intuitively put, the structure of these models is one where
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Figure 7: Ranked-clusters model of an interorganizational network.

the diagonal blocks have only symmetric ties and the asymmetric ties goes either
up the (hierarchical structure) or down the structure but not both. Figure 6 shows
the strong friendship choices of an elite young women’s soccer term (with fictitious
names). It is drawn with the asymmetric ties going up the structure with the more
popular women above the less popular women. On the left is the network of ties
and on the right is the shrunken network where the vertices in each diagonal block
have been shrunk to a single vertex.

Of course, the structure shown in Figure 6 could be obtained by a visual inspec-
tion of the network once it is drawn. A more complex example is given in Figure 7
where the network has environmental social movement organizations in the Milan
area (Diani, 1995) and the tie is ‘works with’. Surprisingly, it has a ranked-clusters
structure with only 8 inconsistencies (all in the form of asymmetric ties being located
within diagonal blocks/clusters).
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6 Conclusion

The basic blockmodeling procedures are discussed in detail in Exploratory Net-

work Analysis with Pajek (de Nooy, Mrvar, and Batagelj, 2004). In this paper
we present recent developments of generalized blockmodeling procedures as devel-
oped by Batagelj, Doreian and Ferligoj and presented in Generalized Blockmodeling

(Doreian, Batagelj, and Ferligoj, 2004) and implemented in Pajek.
There are still several algorithms proposed by the group to be implemented in

Pajek e.g., blockmodeling of two-mode networks (Doreian, Batagelj, and Ferligoj,
2004) and blockmodeling of multiple networks. Also the user-friendly interface for
providing additional constraints in pre-specified blockmodels is planned to be im-
plemented in Pajek.
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