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Abstract 

Interaction effects are usually modeled by means of moderated 
regression analysis. Structural equation models with non-linear constraints 
make it possible to estimate interaction effects while correcting for 
measurement error. From the various specifications, Jöreskog and Yang's 
(1996, 1998), likely the most parsimonious, has been chosen and further 
simplified. Up to now, only direct effects have been specified, thus wasting 
much of the capability of the structural equation approach. This paper 
presents and discusses an extension of Jöreskog and Yang's specification 
that can handle direct, indirect and interaction effects simultaneously. The 
model is illustrated by a study of the effects of an interactive style of use of 
budgets on both company innovation and performance. 

1 Introduction 

Moderated regression analysis (MRA) - a particular specification of multiple 
linear regression analysis- has been widely used in management research for 
testing models that involve the presence of a variable that influences the impact of 
an independent variable on a dependent variable. In its usual formulation, MRA 
includes as an additional regressor a multiplicative term between two exogenous 
(independent) variables  which represents the interaction effect (Jaccard et al., 
1990; Aiken and West, 1991; Hartmann and Moers, 1999; Irwin and McClelland, 
2001). Instances of recent applications of MRA in management research can be
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found everywhere from Accounting (Li and Atuahene-Gima, 2001; Abernethy and 
Brownell, 1999), to Marketing (Sethi et al., 2001). 

However, because of measurement error, the estimates of regression 
coefficients in MRA are not consistent. Biased estimates -actually attenuated 
estimates- limit the use of the technique to purely predictive purposes. This bias is 
especially relevant for interaction effects that are usually of low magnitude and 
may easily go undetected if attenuated. Additionally, the estimated standard errors 
of regression coefficients are also biased; so, no coherent inferences about 
population parameters or relationships among variables can be made.  

The use of structural equations models (SEM) for correcting for measurement 
error has been proposed in the management literature, mainly by researchers in 
marketing (Bagozzi and Yi, 1989; Homer, 1990; Ashok et al., 2002). However, 
SEM have been proposed only rarely for estimating interaction effects in 
management (Ping, 1995). This paper critically addresses the problem of modeling 
and testing interaction hypotheses. It has three purposes:  

• to contribute to the discussion among methodologists on SEM (Jöreskog 
and Yang, 1996; Ping, 1995, 1996; Jaccard and Wan, 1996; Li et al., 1998; 
Jöreskog, 1998; Algina and Moulder, 2001; Schumacker, 2002; Moulder 
and Algina, 2002) by combining aspects of the different strategies. We use 
centered indicators as Jackard and Wan (1996) propose for avoiding 
collinearity while using a single indicator for interaction as Jöreskog and 
Yang (1996) propose to increase parsimony. 

• to offer an extension of the usual specification for modeling interaction 
effects. So far, interaction has only been specified among exogenous latent 
variables, ignoring the usual case of having indirect effects simultaneously. 
This leads to the specification of a simultaneous equation system. 

• to use the full strength of SEM by distinguishing between direct, indirect 
and total effects, and discussing the interpretation of the interaction effects 
in the context of a simultaneous equation model. 

 
The paper is organized as follows. First, current SEM approaches for modeling 

interactions are briefly reviewed. Second, a modification of the Jöreskog and Yang 
(1996) single indicator approach is discussed, and third, a simultaneous equation 
model is proposed as an extension of the product indicant approach (Kenny and 
Judd, 1984) and specifically as a generalization of the Jöreskog and Yang model. 
Discussion of testing and interpretation of the interaction effects follows. Finally, 
in order to illustrate this proposal, the new model specification is used to examine 
the potential direct, indirect and moderating effects of an interactive use of 
budgets as management control systems on both innovation and on  performance 
of firms.  
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2 Approaches to model interactions with latent 
variables 

The constructs involved in management and marketing research, such as the ones 
just mentioned (i.e. innovation, performance, use of budgets) lead to models 
including latent variables which contain measurement error. So, instead of using 
observable regressors, researchers have tended to use multiple indicators to 
measure an underlying assumed continuous construct. Then the latent variable is 
specified by combining these indicators, frequently by simply adding their scores 
(Spector, 1992; Likert, 1932; Simpson, 1755) which does not completely solve the 
problem, as regressors obained with summated rating scales still contain 
measurement error. 

Since the 1970s (Jöreskog, 1973) a major advantage of SEM is its capability to 
correct the estimates of the linear relationships between latent variables, both 
direct and indirect, for the measurement errors 

In the 80’s Kenny and Judd (1984) proposed a possible specification for 
modeling interaction effects under the SEM approach, which assumed that both 
interacting variables are continuous. Kenny and Judd´s approach requires each 
latent variable to relate to at least two indicators and implies the formation of 
multiple indicators based on the products of the observed variables. These 
products are then used as indicators of the latent interaction. Different alternatives 
have been proposed for developing Kenny and Judd’s approach. These include 
Jaccard and Wan's (1995) multiple product indicators approach, Jöreskog and 
Yang's (1996) single product indicator approach, Ping's (1995, 1996) two-step 
single and multiple product indicators approach, and Bollen and Paxton (1998) 
two-stage least squares single indicator multiple instrumental variables approach. 
When one or both of the interacting variables are discrete and the number of cases 
in each class large enough, then a "multigroup" approach should be applied (e.g., 
Batista-Foguet et al., 2001; Lomax, 1983). 

Most of these product indicant approaches require SEM programs that permit 
the use of non-linear constraints. Developments in software and contributions by 
Jöreskog and Yang (1996) and Ping (1995) have made it much easier to apply the 
Kenny and Judd approach, highlighting problems and issues related to modeling 
interaction effects in latent variable models. 

2.1  Ways to obtain the indicators of a latent interaction in SEM  

It is not the aim of this paper to provide a comprehensive presentation of the 
various procedures currently available for testing interaction effects in structural 
equation modeling (See Li et al., 1998; or Schumacker and Marcoulides, 1998).  
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The Jaccard and Wan (1995) multiple indicator method simultaneously 
includes all cross-products of the original indicators of both interacting latent 
variables. So it is a straightforward but not parsimonious implementation of Kenny 
and Judd’s approach.  In addition, this approach leads to problems of non-
normality of the indicators because the product of two normally distributed 
variables is not itself normally distributed even if the original variables are.  

Jöreskog and Yang (1996) argued that multiple indicators for the interaction 
are not necessary; pointing out that the model can be identified with a single 
indicator of the product variable, which leads to a model with fewer parameters, 
fewer complex constraints and fewer non-normal product indicators.  

Ping (1995, 1996) uses summated rating scales to compute scores for both 
interacting latent variables, and then multiplies these scales to obtain a single 
indicator of the interaction. The author derives the expressions of the loading and 
the error variance of the interaction indicator based on those of the original 
indicators, which can be used in two alternative ways. In a more convenient two-
step strategy to fix the values of the measurement parameters of the full model, 
using estimates obtained in a previous confirmatory factor analysis of the 
indicators of both latent variables that interact. In a more sophisticated one-step 
strategy as a set of constraints involving the measurement parameters in the 
estimation of the full model. The performance of the standard errors and test 
statistics in the former two-step strategy has not been studied.  

This paper focuses on the approach by Jöreskog and Yang (1996), and 
developments by Yang Jonsson (1998) and Yang Wallentin and Jöreskog (2001). 
These authors use non-centered indicators because they consider the means of the 
latent variables, which are related to the means of the observed indicators and to 
other model parameters. However, this consideration implies additional constraints 
in the structure of the measurement model. These constraints can be avoided if the 
purpose of the analysis refers only to the covariances among latent variables. We 
therefore suggest modifying Jöreskog and Yang’s approach by using centered 
indicators and modelling only covariances, which brings the approach closer to 
those of Jackard and Wan and of Ping. In addition, centered indicators would 
avoid collinearity with the latent interaction, a point which we take up later. 

3 Jöreskog and Yang’s specification in SEM for 
modeling interaction effects. Single equation model 

In general the following model has been specified for the latent variables, 
represented by the Greek letter η as opposed to the observed variables: 
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Figure 1: Single equation SEM for modeling interaction effects. 

 
This latent exogenous variables model can be presented by the following 

equation:  
 

η4= α4 +β41η1+  β42 η2 + β43 η3 +ζ4     (3.1) 
where  η3=η1·η2       (3.2) 

         
where β4k stands for the regression coefficient of η4 on ηk and ζ4 is the 
disturbance term. In this approach all three variables η1 ,η2 and η3 are exogenous 
variables with free variances ψkk and covariances ψkk’. Although η1 and η2 are 
centered, η3 is not. So, other parameters are E(η3)=α3 and Var(ζ4)=ψ44.   

It is assumed, without loss of generality, that the first exogenous latent 
variable has two indicators, the second three indicators, and the endogenous latent 
variable (whose measurement error does not lead to coefficient bias) one indicator. 
As is usual (Jöreskog and Yang, 1996; Yang Jonsson, 1998) the first indicator of 
each variable is used to build the single indicator of the interaction (y6=y1y3). 
These assumptions lead to a measurement model that can be specified as follows: 
 

 y1= τ1 +λ11 η1 + ε1  

 y2= τ2 +λ21 η1+  ε2 

 y3= τ3 +λ32 η2 +  ε3 
 y4= τ4 +λ42 η2+ε4        (3.3) 
 y5= τ5 +λ52 η2+ε5 

 y6 =τ6 + λ61 η1 + λ62 η2+  λ63 η3 +   ε6  

 y7 =η4 

 

For identification purposes, and without any loss of generality, the scale of the 
latent variables is fixed by constraining the loadings of the indicators that are used 
to compute the product indicator:  

 

η2 η3 = η1η2 

η1 
 

 η4 
 

  ζ4 

ψ31 

β41 β42 β43 

ψ21 

ψ32 

α3 
 

α4                        
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 λ11 =1 and λ32 =1           (3.4) 
 

Additional parameters of the measurement part are Var(εj)=θjj . 
The specification is completed with the assumptions that η1, η2,� and ε1 to ε5 are 

multivariate normally distributed with zero expectation. Additionally, ε1 to ε5 are 
assumed to be mutually independent (not only uncorrelated) and independent of η1, 

η2 and ζ4, and ζ4 independent of η1 and η2. 
These assumptions allow us to decompose the expectation, variance and 

covariance of the product indicator, as well as to derive non-linear constraints, 
relating its associated parameters. Thus, the addition of the product indicant 
variable involves the estimation of very few additional free parameters. 

If y1 and y3 are used to fix the scale of the latent variables, the single product 
term, y6, is computed as: 
 

  y6 = y1y3 =(τ1+η1+ε1) (τ3+η2+ε3)     (3.5) 
=τ1τ3 + τ3 η1 + τ1η2+η2η1 + ε6   

 
where ε6 = τ3ε1 + τ1ε3 + η1ε3+ η2 ε1+ ε1ε3    (3.6) 

 
The following constraints can be derived from the expressions of y6  in 

Equations 3.3 and 3.5: 
 

τ6= τ1τ3 
λ61=τ3

  
  λ62=τ1

                   (3.7) 
λ63=1 

 
The measurement error variances and covariances can be derived from 

Equation 3.6, which involves the following constraints:  
 

θ61 = E(ε6ε1) = τ3 E(ε1ε1) = τ3 θ11        (3.8) 
θ63 = E(ε6ε3) = τ1E(ε3ε3) = τ1 θ33 

 
 θ66 = Var(ε6)= Var(τ3ε1 + τ1ε3 + η1ε3+ η2 ε1+ ε1ε3 )  

         =τ3
2 Var(ε1) +τ1

2 Var(ε3)+Var(η1)Var(ε3)+ Var(η2)Var(ε1)       
 +Var(ε1)Var(ε3)      (3.9) 

       =τ3
2 θ11+τ1

2θ33+  ψ11θ33+  ψ22θ11+θ11θ33 
 

Under bivariate normality of the main effects η1 and η2 (Anderson, 1984), the 
variance of the product of latent variables is: 
 
ψ33  = Var(η3)= Var(η1·η2) = Var(η1)Var(η2)+Cov2(η1η2) = ψ11 ψ22 + ψ2

21 (3.10) 
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And its expectation: 
 

α3 =E(η3)=E(η1η2)=Cov(η1η2)=ψ 21     (3.11) 
 
 

Although this model leads to some extra parameters (λ61, λ62, λ63, ψ33,  θ61, θ63, 
θ66, τ6 and α3), it has been shown above that all of them can be expressed as 
functions of other parameters of the model, so that using these constraints the only 
extra parameters to be estimated are ψ31, ψ32 (that is, the covariances of latent 
variables that are customarily free and identified) and β43, the parameter of 
interest. So with a litle extra effort, one can specify these constraints and this 
model can be estimated. Constraint 3.10 (requiring normality) is not needed for 
identification and can be omitted if η1 and η2 are non-normal. 

4 Modification of the Jöreskog and Yang approach to 
model interactions 

4.1 Use of centered indicators 
 
It has to be noted that any indicant product approach may lead to substantial col-
linearity, precisely because the measures associated with the interaction construct 
are functions of the measures of the main effect constructs (Ridgeon et al., 1998). 
Consequently, in order to avoid collinearity, we suggest that the analysis is 
conducted on centered indicators of the interacting variables (See Li et al., 1998; 
and the Appendix in Irwin and McClelland, 2001, for a more detailed discussion 
on the elimination of collinearity by changing the origin of the variables which 
interact).  This involves computing y6 from the centered indicators y1 and y3 and 
subsequently centering y6 again. 

In those cases where the mean structure parameters α and τ are not of interest 
to the researcher, Equations 3.1 and 3.3 become shorter and constraints in 
Equations 3.7 to 3.11 from Jöreskog and Yang’s approach can be reduced 
dramatically in both number and complexity, thus simplifying the analysis while 
preventing collinearity. Since for every original centered indicator the 
measurement intercept, τ, is zero, and the expectations and intercepts α of all 
latent variables are also zero (even η3 is implicitly redefined as η3-α3) , these 
equations and constraints become:  
 

η4= β41η1+  β42 η2 + β43 η3 +ζ4        (4.1b) 
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y1=  η1 + ε1 

y2= λ21 η1+  ε2 

y3= η2 +  ε3 
 y4=  λ42 η2+ε4             (4.3b) 
y5=  λ52 η2+ε5 

y6 =  η3 +   ε6  

y7 = η4   
 

y6 =y1y3 =  η2η1 + ε6         (4.5b) 
 

where ε6 = η1ε3+ η2 ε1+ ε1ε3      (4.6b) 
 
which leads only to the following simple constraints: 
 

θ66 =   ψ11θ33+   ψ22 θ11+θ11θ33     (4.9b) 
 

  ψ33  =  ψ11 ψ22 + ψ2
21       (4.10b)  

 
with λ63=1 and τ6=λ61=λ62=θ61=θ63=0. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Structural equation model including direct, indirect and interaction effects 
simultaneously. 

4.2 A simultaneous equation system. Specification 

Interactions with SEM have so far only been modeled with one equation, where the 
regressors that interact are exogenous latent variables (Schumacker and Marcoulides, 
1998; Li et al., 1998; Schumacker, 2002; Moulder and Algina, 2002). This single 
equation formulation discussed in the SEM literature and presented in the previous 
section allows for correction of measurement error but, due to the use of a single 
equation, it only makes it possible to estimate the interaction effect. In order to 

η3= η1η2 

β21 

β43 

 ζ4 

β41 
ψ32 

η1 
 

η4 

ψ31 

η2 

  ζ2 

β42 
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also estimate indirect effects in the same model, a simultaneous equation system 
must be specified which extends the usual single indicator specification by Yang 
and Jöreskog (1996), including direct, indirect and moderating effects in the same 
model. The structural part of our proposal is specified in Figure 2.  

The structural part of the model includes Equation 4.1b and an additional 
equation for the relationship among the up to now exogenous variables, η1 and η2.  
 

     η2=β21η1+ζ2         (4.12) 
 

Now only η1 and η3=η1η2 remain exogenous. Additional parameters of the 
structural part are Var(ηk)= ψkk; k= 1 to 4. As in the one-equation specification, all 
covariances between η3  and its constituents η1 and η2 are model parameters: 
Cov(η3,η1)=ψ13  and Cov(η3,ζ2)=ψ32. Unlike the previous case, now ψ32  involves a 
disturbance term.  

The main difference with the previous specification is that not all the variances 
and covariances of η1 and η2 are model parameters but rather functions of model 
parameters that can easily be derived from path analysis or from variance and 
covariance algebra: 
 

        Var(η2 )= ψ22+ β2 21 ψ11      (4.13) 
Cov(η1,η2)  =  β 21 ψ11  

 
The measurement part is specified as before in Equation 4.3b. The 

specification is completed with the assumptions that η1, ζ2, η3,� ζ4 and ε1 to ε5 are 
multivariate normally distributed with zero expectation. In addition, the ε terms 
are independent, both mutually and with all η and ζ. ζ4 is independent of η3, ζ2 and η1 

and ζ2 is independent of η1. 
Substituting in Equation 4.9b the new expression for the variance of η2  yields:  

 
  θ66 = ψ11θ33 +  (β21

2ψ11 + ψ22)θ11+θ11θ3    (4.9c) 
 

Finally, the variance of the product of the latent variables is: 
 

 ψ33= Var(η1)Var(η2) + Cov2(η1η2)=                   (4.10c)  
  ψ11 (ψ22+β2 21 ψ11)  + ( β 21 ψ11 )

2= ψ11 ψ22 + 2β2 21 ψ2
11 

 
Given that the model in this section is saturated with respect to the 

relationships for the latent variables and thus is equivalent to the previous model, 
it leads to the same results for Equations 4.1b and 4.3b. However, the model in 
this section also estimates the relationship between η1 and η2 and thus both a 
direct and an indirect effect from η1 to η4. 

We have chosen the simplest model with only two equations where one 
interacting variable has a causal effect on the other variable. However the same 



172 Joan Manuel Batista-Foguet  et al. 

approach could also be used if one or more exogenous variables would have an 
effect on η1 and η2. The formulation would remain the same, only a substitute for 
Equation 4.13 would have to be derived by path analysis, including Var(η1) if 
needed, which would have obvious implications for Equations 4.9c and 4.10c. 

4.3 Interpretation 

The effect of η2 on η4 conditional on different values of η1, can be obtained from 
the expected value in the expression  
 

E(η4) = β41η1+ β42 η2 + β43 η1η2              (4.14) 
 
as the partial derivative E(η4) with respect to η2. 
 

14342
2

4  
 )E( ηββ

η
η

+=
∂

∂
       (4.15) 

 
Besides a direct main effect, this equation also displays a typical interaction 

effect, in which the effect of η2 on η4 depends on the value of η1. Thus, the 
interpretation of the main effect β42 parameter is that occurring when the value of 
the other variable is zero. If η1 and η2 are mean centered, β42 can be more easily 
interpreted as the effect for the mean value of the other variable. 

In order to assess the effect of η1, its relationship to η2 has to be taken into 
account, so that: 
 

21
1

2  
 )E( β

η
η

=
∂

∂
        (4.16) 

 
And the partial derivative of Equation 4.14, now with respect to η1 gives us 

the total effect of η1 on η4 as: 
 

)( 
 )E(

121243214241
1

4 ηβηββββ
η
η

+++=
∂

∂
    (4.17) 

 
This equation displays a direct main effect β41, an indirect effect β42β21, the 

interaction effect β43η2 and a combined interaction-indirect effect β43β21η1. Thus, 
the effect of η1 on η4 depends on the value of η2 to a greater extent than one 
should expect from the interaction effect alone. If we omit all terms related to the 
indirect effect we have the direct main and interaction effects as: 
 

24341 ηββ +         (4.18) 
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Standardization prevents η3 from being equal to η1η2 and thus Equation 4.14 

from holding (see Jaccard et al., 1990). Thus, all interpretations in this section 
must never be done with standardized parameters. 

4.4 Estimation and testing 

In general, for SEM normality is not required for consistency of ML estimates (e.g. 
Satorra, 1990), but only for the correctness of standard errors and test statistics. 
However, in the interaction model case, the restriction in equation 4.10c only 
holds under normality of the main effects, and thus, non-normality implies a 
specification error and can lead to bias. The fulfillment of the normality 
assumption must thus be thoroughly assessed prior to fitting this type of models. If 
the main effect indicators appear to be non normal, then the model should be fitted 
with constraint 9c only. 

However, since the product indicant will not be normally distributed even if 
the main effect indicators are, methods that compute standard errors and test 
statistics that are robust to departures from normality are required even in the 
normal case (Yang-Wallentin and Jöreskog, 2001). 

Robust procedures in SEM appeared earlier on. Browne (1984) suggested an 
alternative asymptotically distribution free estimation method that later research 
has reported to be limited in all but extremely large samples (e.g. Muthén and 
Kaplan, 1992; Fouladi, 2000). 

Following a different path, Satorra and Bentler (1988, 1994) developed robust test 
statistics such as the mean-and-variance adjusted χ2 statistic, the mean scaled χ2 statistic 
and robust standard errors. These statistics are the right ones to use under arbitrary 
distributions when using the still consistent standard ML estimation method. Among these 
robust statistics, the mean scaled χ2 statistic is preferred for smaller samples (Satorra, 
2001).  

On the contrary, t-tests of significance of individual parameters like the 
interaction term using robust standard errors are not recommended for small 
samples (Boomsma and Hoogland, 2001). Mean-scaled χ2 differences should be 
used instead. Unfortunately, the difference between two mean-scaled χ2 statistics 
is not χ2 distributed, though some easy adjustments can be made by hand (Satorra 
and Bentler, 2001).  

Let T*
0 and T*

1 be the mean-scaled χ2 statistics, T0 and T1 the standard ML χ2 
statistics, c0 and c1 the scaling constants obtained as c0 =T0/T

*
0 and c1 =T1/T

*
1, and d0 and 

d1 the degrees of freedom for two nested models, of which Model 0 is more restrictive. The 
robust χ2 difference can be computed as: 
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−=χ     (4.19) 

 
The LISREL8.5 program (Du Toit and Du Toit, 2001) includes these robust 

statistics and allows the researcher to introduce non-linear constraints and is thus 
appropriate for the estimation of this model.  

5 An illustration 

5.1 Background 
 
The example we will use comes from a study by Bisbe (2002). He analyzes the 
effects of the style of use of budgets (η1) on innovation (η2) and performance (η4). 
In Bisbe´s study, following Simon’s framework  (Simons, 1991, 1995, 2000) the 
following hypotheses are formulated: 

• Hypothesis 1: it is postulated that the more interactive the use of budgets, 
the greater the innovation. This is equivalent to saying that β21 is larger than 
zero. 

• Hypothesis 2: it is postulated that, the greater the innovation, the better the 
performance. This hypothesis can be considered to hold if Equation 4.15 is 
greater than zero for all values in the usual range of variation of η1. 
Hypotheses 1 and 2 together imply an indirect effect of interactive use of 
budgets on performance. 

• Hypothesis 3: it is expected that the interactive use of budgets has a larger 
effect on performance when innovation is high, which leads to the inclusion 
of an interaction term η3, and to the effect β43 being positive.  

• Hypothesis 4: there may also be a direct effect of the interactive use of 
budgets on performance. This is equivalent to saying that Equation 4.18 is 
larger than zero for all values in the usual range of variation of η2. Even if 
this hypothesis does not hold, β41 must also be included in the model as the 
inclusion of interactions makes all main effects necessary in order not to get 
misleading interaction estimates (Irwin and McClelland, 2001). 

 
All these hypotheses make our model identical to that of Figure 2. Note that 

some of them are directly related to values of a single model parameter while 
others are not. 
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5.2 Data and measurement instruments 

Bisbe (2002) developed multi-item instruments for measuring the following 
constructs:  

 
Interactive Style-of-use of Budgets (η1):  

y1: the extent to which information from the budget system demands frequent 
and regular attention from the top manager; 
y2: the degree to which information from the budget system is discussed face-
to-face on a permanent versus merely on an exception basis. 

 
Product Innovation (η2): 

y3: part of the product portfolio corresponding to recently launched products; 
y4: rate of introduction of new products; 
y5: tendency of firms to pioneer. 
 

These five items were in a Likert format ranging from 1 to 7. In those cases 
where budgets were not used at all in the company, the items y1 and y2 were scored 
zero. The three innovation items, referred to the last three years as compared to 
industry average. 

Performance (η4): Based on the multidimensional self-rating instrument 
developed by Govindarajan (1984, 1988), performance was assessed through a 
battery of items that represent effectiveness on a series of  financial (sales growth 
rate, revenue growth rate, return on investment, profit/sales ratio) and customer 
dimensions (customer satisfaction, customer retention, customer acquisition and 
increase in market share) over the last three years as compared with the industry 
average. Items were weighted according to their varying perceived relative 
importance.  Composite scales are not free from measurement error, but this does 
not introduce any parameter bias when the variable measured with error does not 
have any effect on any other variable. 

Data were gathered through the administration of a written questionnaire to a 
sample of chief executive officers of medium-sized, mature manufacturing firms 
with headquarters located in Catalonia, Spain (Bisbe, 2002). The whole population 
studied comprised 120 firms. 58 questionnaires were returned, all of which were 
complete. Thus, the response rate was 48.33%. However, for the sake of 
consistency in the time framework of the study, cases where the executives 
reported less than three years in their current job position (n=18) were excluded. 
The resulting useable sample was thus n=40. 

Even though a sample size of 40 can be considered rather small, in SEM the 
precision and statistical properties of the estimates and the power of the tests do 
not only depend on sample size but also on a number of model characteristics. In 
regression models, parsimony, absence of collinearity and high percentages of 
explained variance reduce the sample sizes needed. In SEM, the list is completed 
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with analogous characteristics referring to the measurement part: low numbers of 
latent variables, high numbers of indicators per latent variable, low number of free 
parameters, and high reliabilities of the indicators can reduce sample size 
requirements (e.g. Saris and Satorra, 1988). 

6 Results 

6.1 Measurement model 
 
First, we specified a three-factor confirmatory factor analysis (CFA) model where 
the latent interaction has a single indicator as in Jöreskog and Yang (1996). The 
introduction of the latent interaction in the measurement model involves the 
introduction of the constraints in Equations 4.9b and 4.10b. Additionally, the 
parsimony of the model was increased by assuming that the units of measurement 
were the same for all indicators of the same factor (Equation 6.1). As mentioned 
earlier, parsimony and high indicator reliability are going to be crucial with our 
small sample size. The estimates and path diagram of the model including 
Equation 6.1 are in Figure 3. 
 

λ21 =1, λ32 =1 and  λ52 =1      (6.1) 
 

 
 
 
 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Estimates of the measurement model. 
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The robust χ2 difference test statistic for the constraints in Equation 6.1 was 
0.38, with three degrees of freedom and is thus clearly non-significant (p-
value=0.94). The removal of the constraints would increase standard errors by 
54%, on average, over all parameters. This is comparable to the increase in 
standard errors that takes place if the sample size is divided by about two and a 
half. The high estimates of the reliabilities of the indicators and the low estimates 
of factor correlations (0.37 was the highest value in absolute terms) of the 
constrained model also help reduce small sample related problems. 

The goodness of fit of the model with the constraints in Equation 6.1 was 
excellent with a Satorra-Bentler scaled χ2, of 14.602 with 11 degrees of freedom 
(p-value=0.201).  

6.2 Structural model 

The measurement and structural part are, of course, estimated simultaneously (See 
in the appendix the setup for modeling the interaction with LISREL 8.51) but since 
measurement estimates have already been presented in Figure 3 we only give the 
results of the structural part here, which is shown in the path diagram of Figure 2 . 
 

Table 1: Estimates of the structural model1. 

Parameter / 

Index 

Estimate 
 

Robust χ2 

 diference2 
Robust 
p-value 

β43  0.306 5.89 0.015 
β42  0.415 2,19 0.139 
β41  0.073 0.24 0.624 
β21 -0.309 3.63 0.057 
R²(η2)  0.132   
R²(η4)  0.552   
robustχ2 15.80   
d.f. 14   
p-value 0.326   

1 Equal loading constraints as in Equation 20 were imposed 
2 Robust χ2 difference statistic to test the significance of the  
individual parameter, with 1 d.f. 

 
For testing the effect of the latent interaction on performance (constraint β43=0) 

we used the robust χ2 difference statistic. The statistic is 5.89,  with 1 degree of freedom 
and is thus clearly significant (p-value=0.015). The relevance of the interaction effect is 
also revealed by the fact that the R2 of the equation of η4 would drop from 0.552 to 0.286 if 
the interaction effect was removed. Hypothesis 3 is thus clearly supported. 
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No other effects are significant. However, we can argue that the significance of 
the β43 interaction effect implies that the β42 and β41 main effects must also be in 
the model even if non-significant (Irwin and McClelland, 2001). Hypothesis 1 is 
clearly not supported, while Hypotheses 2 and 4 involving main effects are 
assessed next. 

The interpretation of the interaction effect follows naturally. A statistically 
significant interaction indicates that there is a non-additive effect (i.e. independent 
and proportional effects) of both factors on performance but rather that the effect 
of each factor depends on the value of the other. In other words, the expected 
effect of a factor should be interpreted conditional on the value of the other 
moderating factor.  

For instance, Figure 4 illustrates how the effect of innovation on performance 
depends on the value of the interactive style-of-use of budgets, by showing the 
decomposition of the total effects of both factors on performance for the values 0 
and 1 of the other factor.  

 
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Decomposition of the total effect of innovation on performance. 

 
Figure 4 illustrates the interpretation of the unstandardized total effect of η2 on 

η4, according to Equation 4.15, as the direct effect (β42) plus the interaction effect 
(β41η1). Thus, each additional unit of innovation raises the expected increase in 
performance by 0.721 if the interactive use of budgets equals 1. 

Thus, to assess hypotheses 2 and 4, which relate to the main effects of η1 and 
η2 on performance, these main effects have to be computed according to Equations 
4.15 and 4.18 and must be evaluated conditional to the range of plausible values of 
the other factor. To represent this range, we took the percentiles 5, 25, 50, 75 and 
95 of the items y1 and y3 that are used to fix the scale of η1 and η2 respectively. 
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Table 2: Conditional effects on performance. 

 
percentile 5 25 50 75 95 

conditioned on η�= -
2.23 

-
1.23 

-
0.23 

1.77 2.70 

Equation 4.15 (Hypothesis 2). Conditional total 
effect of  η2 on η4� -

0.27 0.04 0.34 0.96 1.24 
conditioned on η2= -

2.10 
-

1.10 
-

0.10 
0.90 2.90 

Equation 4.18 (Hypothesis 4) Condit. non indirect 
eff�ect of η� � on η4 

-
0.57 

-
0.26 0.04 0.35 0.96 

 
Table 2 clearly shows how much the effect of each factor on performance 

could differ when the values of the other factor are varied. They can have negative 
effects for low values of innovation and of the interactive use of the budget while 
the magnitude of the effects can be considerable when the factors take on high 
values. The fact that negative effects are possible for certain values does not 
support hypotheses 2 and 4. 

7 Discussion  

From the introduction, the reader is aware that the purpose of this paper is mainly  
methodological. The paper provides a modification and an extension of Jöreskog 
and Yang’s approach for modeling interactions.  

This paper started by referring to the need for handling measurement errors 
through SEM instead of using MRA for modeling interaction as marketing studies 
usually do. A re-analysis of the same data using MRA on summated rating scales 
yielded a R2 for performance equal to 0.29, about the half of the R2 obtained in 
this paper. This is the result of measurement error attenuation. 

Given that most analyses refer only to covariances (the mean structure being 
unnecessary to identify the relevant regression slope parameters) we propose a 
modification of Jöreskog and Yang’s SEM strategy by centering the original 
indicators prior to computing the interaction term, and then centering the 
interaction term as well. In this way we avoid collinearity while parsimony 
increases in the single indicator approach. As a consequence, the additional 
constraints involved in the measurement model’s structure are simplified, which 
dramatically reduces the software set up.  The only disadvantage may be a small 
loss in precision of the estimates due to the loss of one degree of freedom as a 
result of the constraints imposed on the mean structure. This drawback could not 
be observed for our data, for which standard errors were even 2% lower on average 
when analysing only the covariance structure. Changes in the point estimates were 
also very minor. 
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Finally, the crucial question this paper tries to answer is: if one of the strengths 
of SEM is modeling indirect and direct effects together, why should interaction 
always be modeled only with direct effects? The paper specifies a simultaneous 
equation system to jointly estimate direct, indirect and interaction effects in a 
single step and in the same model using full information estimation procedures. 
The covariance structure involved by the simultaneous equation system is also set 
forth. In addition, the paper proposes an original, very straightforward 
interpretation of the results, analysing the total effects in terms of direct, indirect 
and interaction effects (Equations 4.14 to 4.18, Figure 4 and Table 2). Though 
only one very simple case has been presented, the potential for generalizations is 
large. Only the variances and covariances of both variables that interact have to be 
expressed as a function of model parameters by means of path analysis. 
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Appendix  

Setup for modeling the interaction and indirect effects with LISREL 8.51 

Modified Joreskog and Yang’s model of interaction a nd indirect 
effects 
DA NI=7 NO=40 
LA 
y1 y2 y3 y4 y5 y6 y7 
CM fi=mlcm.cm 
AC fi=mlcm.ac 
MO NY=7 NE=4 LY=FU,FI BE=FU,FI TE=DI,FR PS=SY,FI 
LE 
eta1 eta2 eta3 eta4 
FR be(2,1) be(4,1) be(4,2) be(4,3) 
FR ps(3,1) ps(3,2) ps(1,1) ps(2,2) ps(3,3) ps(4,4) 
VA 1 ly(1,1) ly(2,1) ly(3,2) ly(4,2) ly(5,2) ly(6,3 ) ly(7,4) 
FI te(7,7) 
CO te(6,6) = ps(1,1)*te(3,3)+ps(2,2)*te(1,1)+be(2,1 )**2*ps(1,1)* c 
te(1,1)+te(3,3)*te(1,1) 
CO ps(3,3) = ps(1,1)*ps(2,2)+2*be(2,1)**2*ps(1,1)** 2 
OU ML  

 


