MetodolosSki zvezki, Vol. 1, No. 1, 2004, 143-161

Comparison of Logistic Regression and Linear
Discriminant Analysis: A Simulation Study

Maja Pohat, Mateja Bla and Sandra Tufk

Abstract

Two of the most widely used statistical methods fanalyzing
categorical outcome variables are linear discrimtnanalysis and logistic
regression. While both are appropriate for the tmwment of linear
classification models, linear discriminant analysiakes more assumptions
about the underlying data. Hence, it is assumed libgistic regression is
the more flexible and more robust method in caseviofations of these
assumptions. In this paper we consider the prolé&choosing between the
two methods, and set some guidelines for propelicehorhe comparison
between the methods is based on several measurpredictive accuracy.
The performance of the methods is studied by sitimta. We start with an
example where all the assumptions of the lineacriliinant analysis are
satisfied and observe the impact of changes reggrdihe sample size,
covariance matrix, Mahalanobis distance and dipecbf distance between
group means. Next, we compare the robustness ofmbthods towards
categorisation and non-normality of explanatory iables in a closely
controlled way. We show that the results of LDA ah® are close
whenever the normality assumptions are not too \padblated, and set
some guidelines for recognizing these situationse Wdiscuss the
inappropriateness of LDA in all other cases.

1 Introduction

Linear discriminant analysis (LDA) and logistic regsion (LR) are widely used
multivariate statistical methods for analysis of alavith categorical outcome
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variables. Both of them are appropriate for the elepment of linear
classification models, i.e. models associated Mitlear boundaries between the
groups.

Nevertheless, the two methods differ in their badiea. While LR makes no
assumptions on the distribution of the explanataatad LDA has been developed
for normally distributed explanatory variables. Ittherefore reasonable to expect
LDA to give better results in the case when thenmaity assumptions are
fulfilled, but in all other situations LR should lmeore appropriate. The theoretical
properties of LR and LDA are thoroughly dealt withthe literature, however the
choice of the method is often more related to tieédfof statistics than to the
actual condition of fulfilled assumptions.

The goal of this paper is not to discourage theeanirpractice but rather to set
some guidelines as to when the choice of either oheéhe methods is still
appropriate. While LR is much more general and hasumber of theoretical
properties, LDA must be the better choice if we wnilne population is normally
distributed. However, in practice, the assumptians nearly always violated, and
we have therefore tried to check the performance both methods with
simulations. This kind of research demands a camuatrol, so we have decided
to study just a few chosen situations, trying to fendogic in the behaviour and
then to think about the expansion onto more geneasles. We have confined
ourselves to compare only the predictive power efrtitethods.

The article is organized as follows. Section 2 fhyieeviews LR and LDA and
explains their graphical representation. Sectiome3ails the criteria chosen to
compare both methods. Section 4 describes the psooé the simulations. The
results obtained are presented and discussed itio8€s, starting with the case
where all the assumptions of LDA are fulfilled andntinuing with cases where
normality is violated in sense of categorization ask#wness. It is shown how
violation of the assumptions of LDA affects both timeds and how robust the
methods are. The paper concludes with some guielelior the choice between the
models and a discussion.

2 Logisticregression and linear discriminant analysis

The goal of LR is to find the best fitting and m@strsimonious model to describe
the relationship between the outcome (dependen¢sponse variable) and a set of
independent (predictor or explanatory) variablese Tiethod is relatively robust,
flexible and easily used, and it lends itself to aamingful interpretation. In LR,
unlike in the case of LDA, no assumptions are meatgmrding the distribution of
the explanatory variables.

Contrary to the popular beliefs, both methods campgied to more than two
categories (Hosmer and Lemeshow, 1989, p. 216)simplify, we only focus on
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the case of a dichotomous outcome variable (Y). IRemodel can be expressed
as

P(Y =1|X )=

= 2.1
=1x)=S @)

where the Yi are independent Bernoulli random Malga. The coefficients of this
model are estimated using the maximum likelihoodthod. LR is discussed
further by Hosmer and Lemeshow (1989).

Linear discriminant analysis can be used to deteemimhich variable
discriminates between two or more classes, ancetive a classification model for
predicting the group membership of new observatipiierth and Cronin, 2003).
For each of the groups, LDA assumes the explanatanables to be normally
distributed with equal covariance matrices. Theesat LDA has two groups. To
discriminate between them, a linear discriminamicfion that passes through the
centroids of the two groups can be used. LDA isud$sed further by Kachigan
(1991). The standard LDA model assumes that thelitmmal distribution of X|y
is multivariate normal with mean vectqwy and common covariance matrk
With some algebra we can show that we assigh xdaml as

1

PA|X)=———— 2.2
(%) (e T (2.2)
whereo andp coefficients are
B=(r, —p)" X"
s (2.3)
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nl andz0O are prior probabilities of belonging to group ridagroup 0. In practice
the parametersl, =0, ul1, pn0 andX will be unknown, so we replace them by their
sample estimates, i. e.:

fi=lh =
n’ n'
f=X, =3, i, =%, ==X, (2.4)
n Yi=L n Yi=0

(2.2) is equal in form to LR. Hence, the two methatb not differ in functional
form, they only differ in the estimation of coefficies.
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2.1 Graphical representation: An explanation

When the values ofi and 3 are known, the expression for a set of points with
equal probability of allocation can be derived as

eaﬂ}Tx

+ e:HBTX

O.5=l = 0=a+B"x (2.5)

In two-dimensional perspective this set of poinssa line, while in three
dimensions it is a plane.

Figure 1 shows the scatterplot for two explanataayiables. Each of the two
groups is plotted with a different character. Thee&ar borders presented are
calculated on the basis of the estimates of eactihade The ellipses indicate the
distributions assumed by the LDA.

x2

T T T T
-2 0 2 4

Figure 1: The linear borders between the groups for LR (§odind LDA (dotted line).

3 Comparison criteria

The simplest and the most frequently used criteflmmcomparison between the
two methods is classification error (percent ofarrectly classified objects; CE).
However, classification error is a very insensitigad statistically inefficient
measure (Harrell, 1997). The fact is that the cfacsgtion error is usually nearly
the same in both methods, but, when differencesstexthey are often
overestimated (for example, if the threshold fors¥yes 0.50, a prediction of 0.99
rates the same as one of 0.51). The minimum inféonagained with the
classification error is in the case of categorie{planatory variables. The
boundary lines in figures below differ approximat@&gually in coefficients, but
the classification errors provide different inforiwen. In Figure 2a, one of the
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possible outcomes lies in the area where the laresdifferent, and therefore the
predictions will differ in all objects with this écome. On the contrary, the area
between the lines in Figure 2b covers none of tlss@ple outcomes. The
classification error therefore does not reveal aiffiecence.

x2
X2

x1 x1

Figure 2a and 2b: Examples of categorised explanatory variables.

Since more information is needed regarding the iptee@ accuracy of the
methods than just a binary classification rule, idhrand Lee (1985) proposed
four different measures of comparing predictive umacy of the two methods.
These measures are indexes A, B, C and Q. They eterband more efficient
criteria for comparisons and they tell us how whl models discriminate between
the groups and/or how good the prediction is. Th&oal insight and experiences
with simulations revealed that some indexes areenamd some less appropriate at
different assumptions. In this work, we focus ometh measures of predictive
accuracy, the B, C and Q indexes. Because of itgtiné clearness we sometimes
add the classification error (CE) as well.

The C index is purely a measure of discriminatioils¢dmination refers to the
ability of a model to discriminate or separate valoé Y). It is written as follows

c=3 3P >P)+§I(F,.>= P)l/g 0 (3.1)

i =
Yi=0 Yj=L

where Pk denotes an estimate of P(Yk=1|Xk) fromlY2and | is an indicator
function.

We can see that the value of the C index is inddpenof the actual group
membership (Y), and as such it is only a measurdisgdrimination between the
groups, and not a measure of accuracy of predictforC index of 1 indicates
perfect discrimination; a C index of 0.5 indicatasdom prediction.
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The B and Q indexes can be used to assess theaagcof the outcome
prediction. The B index measures an average of regudifference between an
estimated and actual value:

B=1-Y (P- Y} /n (3.2)

where Pi is a probability of classification into g i, Yi is the actual group
membership (1 or 0), and n is the sample size ol pppulations. The values of
the B index are on the interval [0,1], where 1 oades perfect prediction. In the
case of random prediction in two equally sized gsgupe value of the B index is
0.75.

The Q index is similar to the B index and is alsanaasure of predictive
accuracy:

Q:Zn:[1+ log, (P (= PY)" ] Ir. (3.3)

A score of 1 of the Q index indicates perfect pegidn. A Q index of O indicates
random predictions, and values less than 0 indisatese than random predictions.
When predicted probabilities of O or 1 exist, ther@ex is undefined. The B, C
and Q indexes are discussed further by Harrell aawl (1985).

While the C index is purely a measure of discrimioat the B and Q indexes
(besides discrimination) also consider accuracy oddjgtion. Hence, we can
expect these two indexes to be the most sensitigasores in our simulations.
Instead of comparing the indexes directly, we wiftea focus only on the
proportion of simulations in which LR predicts btithan LDA. As we always
perform 50 simulations, this proportion will be sséically significant whenever it
lies outside the interval [0.36, 0.64].

4 Description of the Simulations

4.1 Basic function

The basic function enables us to draw random sasnplesize n and m from two
multivariate normal populations with different mea@ctors, but equal covariance
matrix . The mean vector of one group is always set at)(d,0e distance to the
other one is measured using Mahalanobis distanbdewhe direction is set as the
angle (denoted by) to the direction of the eigenvector of the coaade matrix.

Each sample is then randomly divided into two paasyraining and a test
sample. The coefficents of LDA and LR are computisthg the first sample and
then predictions are made in the second one. Thaplsag experiment is
replicated 50 times. Each time the indexes for bo#ihods are computed. Finally,
the average value of indexes and the proportionsiafulations in which LR
performs better are recorded.
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4.2 Categorization

After sampling, the normally distributed variablesncbe categorised, either only
one or both of them. The minimum and maximum vadme computed, then the
whole interval is divided into a certain numbercategories of equal size.

4.3 Skewness

As in the case of categorization, we can also debiglre to transform only one of
two explanatory variables or both of them. The BoxxQype of transformation
(Box and Cox, 1964) is used to make normal distidruskewed.

44 Remarks

To ensure clarity of the graphical representation,have confined ourselves to a
two- dimensional perspective, i.e. two explanataayiables. We have nevertheless
made some simulations in more dimensions, butreds of the results seemed to
follow the same pattern.

In most of the simulations we have also set an ufipgt for the Mahalanobis
distance, in order to prevent LR from failing tonserge and LDA from giving
unreliable results.

To simplify, we have fixed the two group sizes as slame. As unequally sized
groups (or unequal a prori probabilities in LR) pshift the border line closer to
the smaller group (the one with the less probahiE@me), this only impacts the
constant, while the coefficient estimates remam same.

All the simulations and computations were perfornigdusing the statistical
software package R.

5 Results
5.1 Comparison of methods when LDA assumptions ar e satisfied

We start from the situation where both explanatogriables are normally
distributed. We observe the impact of changes coteae with the parameters:
sample size, covariance matrix, Mahalanobis distaaod direction of distance
between the group means.

The sample size has the most obvious impact on difference between
methods. LDA assumes normality and the errors it esak prediction are only
due to the errors in estimation of the mean andamae on the sample. On the
contrary, LR adapts itself to distribution and asesmothing about it. Therefore,
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in the case of small samples, the difference betvibe distribution of the training

sample and that of the test sample can be subatamut, as the sample size
increases, the sampling distributions become moabls which leads to better
results for the LR. Consequently, the results oftihe methods are getting closer
because the populations are normally distributed.

Table 1: Simulation results for the effect of sample sizg (n

B C Q CE
n LR LDA LR LDA LR LDA LR LDA
40 0.7747 0.7861 0.7190 0.7199 0. 0489 0.1089 0.1785 0.1700
60 0.7846 0.7925 0. 7405 0. 7405 0.1029 0.1334 0.1693 0. 1647
100 0.7939 0.7993 0. 7593 0. 7590 0.1313 0. 1541 0.1591 0. 1527
200 0.7967 0.7982 0. 7536 0. 7537 0. 1456 0.1514 0.1593 0. 1585
1000 0.8008 0.8011 0. 7609 0.7609 0. 1595 0.1608 0. 1550 0. 1543
The proportion of simulations in which LR perfornms better
B C Q CE
N LR better sane LR better sane LR better sane LR better sanme
40 0.18 0.00 0. 36 0.18 0.14 0.00 0.24 0.32
60 0.20 0.00 0. 36 0.28 0. 20 0.00 0.36 0.28
100 0.20 0.00 0.48 0.16 0.22 0.00 0.26 0.18
200 0.24 0.00 0.48 0.08 0.24 0.00 0.36 0.24
1000 0.26 0. 00 0.62 0. 00 0. 30 0. 00 0.32 0.18
Par amet er s: 2:{1 0-5}, v=n/ 4
0.5 1

x2

x1 x1 x1
Figure 3: The impact of sample size of n=50 (left), n=100ddle) and n=200 (right).

The results from Table 1 confirm the consideratadrove. As the sample size
increases, the LDA coefficient estimations beconwraraccurate and therefore all
four indexes are improving (bold face is used taghhight the method that
performs better). The LR indexes are increasingnefaster, thus approaching
those of LDA. Decreasing difference between the twethods is best presented
with the Q index, which is the most sensitive oAe. the differences between
index means are negligible, it is also interestioglook at the proportion of
simulations where LR performs better. It can bens#eat the value of rates to
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which we pay special attention, that of B index afdQ index, is constantly
increasing.

In the case of other changes (tables below) thelte®of the two methods
remain very close, in fact LDA is only a little bietier than LR. The exception
appears in the case of large Mahalanobis distanesepted in Table 4. We can see
that for low values of Mahalanobis distance LDA dielbetter results, but as this
distance increases and it takes values above ZdrR®rms better.

Table 2: Simulation results for the effect of correlatioatwveen explanatory

variables§).
B C Q CE
o LR LDA LR LDA LR LDA LR LDA
0 0.7938 0.7979 0. 7536 0. 7533 0. 1340 0.1499 0.1623 0. 1587
0.20 0.7909 0.7967 0. 7490 0. 7495 0. 1215 0. 1456 0.1629 0. 1587
0.50 0.7925 0.7965 0. 7497 0. 7498 0.1291 0. 1456 0. 1601 0. 1580
0.90 0.7961 0.7990 0. 7568 0. 7567 0. 1403 0. 1535 0. 1575 0. 1561
The proportion of simulations in which LR performs better

B C Q CE
b LR better sanme LR better same LR better sanme LR better same
0 0.20 0.00 0.54 0.12 0.26 0.00 0. 30 0.22
0. 20 0.12 0.00 0.32 0.12 0.18 0.00 0. 20 0. 36
0.50 0.20 0.00 0. 44 0.12 0.20 0.00 0.34 0.22
0. 90 0.20 0. 00 0. 46 0.18 0.26 0. 00 0. 32 0. 30

Paranmeters: u= n/4, mEn=50

Table 3: Simulation results for the effect of directiondistance between group

meansy).
B C Q CE
v LR LDA LR LDA LR LDA LR LDA
0 0.7928 0.7969 0. 7502 0.7501 0. 1322 0. 1475 0.1629 0. 1609
n/ 4 0.7957 0.7989 0. 7548 0. 7547 0. 1392 0. 1524 0. 1579 0. 1565
/3 0.7991 0.8029 0.7642 0. 7645 0. 1491 0. 1644 0. 1511 0. 1480
n/ 2 0.7966 0.8012 0.7620 0.7619 0. 1428 0.1613 0. 1579 0. 1569
The proportion of sinmulations in which LR perforns better

v B C Q CE
LR better same LR better same LR better sanme LR better same
0 0.18 0.00 0.44 0.14 0.16 0.00 0.28 0. 36
n/ 4 0.30 0.00 0. 44 0. 26 0. 36 0.00 0.34 0.18
n/ 3 0.22 0.00 0. 40 0.14 0.28 0.00 0.24 0.34
1/ 2 0.22 0. 00 0. 36 0. 30 0.24 0. 00 0.32 0. 30

Parameters: y-|1 05| meEn=50
05 1
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Table 4: Simulation results for the effect of Mahalanobistdnce (M).

B C Q CE
M LR LDA LR LDA LR LDA LR LDA
0.50 0.7687 0.7697 0.6769 0.6767 0. 0525 0. 0554 0.1889 0.1871
1.00 0. 7947 0.7985 0. 7552 0. 7551 0.1331 0. 1512 0.1606 0. 1569
1.25 0.8014 0. 8067 0.7741 0.7747 0. 1568 0.1799 0. 1486 0. 1458
2.00 0. 8305 0. 8315 0.8372 0.8374 0.2612 0. 2650 0.1241 0.1224
3.00 0. 8570 0. 8557 0. 8857 0. 8860 0. 3575 0.3492 0.1026 0. 0975
4.50 0. 8922 0. 8816 0. 9310 0. 9305 0. 4994 0.4398 0.0756 0.0747
The proportion of sinmulations in which LR perforns better

B C Q CE
M LR better same LR better sanme LR better same LR better same
0.50 0. 46 0. 00 0. 46 0.22 0.52 0.00 0. 38 0. 26
1.00 0.24 0. 00 0.42 0.24 0.28 0.00 0. 30 0. 30
1.25 0.20 0. 00 0. 20 0.22 0.16 0.00 0.22 0. 38
2.00 0. 56 0.00 0. 36 0.28 0. 60 0. 00 0.28 0.30
3.00 0. 60 0.00 0.38 0.22 0.70 0. 00 0.26 0.24
4.50 0. 90 0. 00 0.42 0. 08 0. 90 0. 00 0.26 0. 40

Par amet er s: 2:{1 0-5}, u= n/ 4, meEn=50
05 1

To sum up, we can say that in the case of normaldy lyields better results
than LR. However, for very large sample sizes theults of the two methods
become really close.

5.2 Theeffect of categorisation

The effect of categorisation is studied under tesuanption that the explanatory
variables are in fact normally distributed, but measl only discretely. This

means they only have a limited number of values teg@ies. When the number
of categories is big enough not to disturb the aacy of the estimates, the
categorisation will not cause any changes in ouultesBut when the values are
forced into just a few categories, we can expectenthscrepancies.

All the simulations in this section are performedthe following way: First,
the values of the indexes for LR and LDA are cad¢edl for the samples from the
normally distributed population. We start from thguation, where the LDA
performs better as shown in the previous sectiontlfe tables, these results are
denoted witho). These samples are then categorised into a oertamber of
categories and the indexes are again calculatecamgared.

As expected, the effect of the categorisation ddpesomewhat on the data
structure (the correlation among the variables)t bevertheless, in all the
simulations similar trends can be observed.

Linear discriminant analysis proves to be rathemstblts prediction power is
not much lower when the values are in 5 or moreegaties, and it usually
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performs better than LR. The story changes whemthmber of categories is low,
and LR is the only appropriate choice in the binayec

The effect of categorisation also depends on tgaicance of the effect of a
certain explanatory variable on the outcome. This uisderstandable — a
nonsignificant variable will not change the modegltransformed. On the other
hand, if two covariates, equally powerful when poteig the result, are
categorised, each of them will have a similar intpatthe result.
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Figure 4a, 4b and 4c: The basic situations used in the study. The elBpdescribe the
distributions within the groups

We have studied the impact of categorisation in textreme and one
intermediate case. Figures below present the stostthat were the basis of our
simulations. Figure 4a presents two uncorrelatedlanatory variables with a
similar impact on the outcome. In Figure 4b only oak the variables is
significant, while in Figure 4c the covariates aerrelated and both have a
significant but different impact on the outcomeiaaie.

Table 5a summarizes the results of the situatiawshin Figure 4c. The upper
part of this table contains the Q indexes for thsecin which both covariates are
categorised. It can be seen that the categorisatmdea only two categories
severally lowers the predictive power of the twoiahtes (the Q index falls close
to zero) and that this effect is greater with LD#ar better clarity, the lower part
of this table concentrates only on the proportionthed simulations in which the
LR performs better (with regard to index Q) and pames these results with the
categorisation of only one variable at a time. Itabvious that LR always
outperforms LDA in the binary case. As discussedvabdhis effect is greater
when we categorise the more significant variabl2) (nd even more so when we
categorise both explanatory variables.

The results summed up in Table 5b are similar. &tiect of both x and % is
similar and therefore the trends are even more eoalge. However, logistic
regression is not truly better even in the two catggase. That is probably due to
the too big “head start” of LDA. When categorisingth covariates the advantages
of LR are again more obvious.
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Table 5a: Simulation results for different number of cateigsr(Figure 4c).

Q
Num of categ. LR LDA LR better
2 0.0712 0. 0579 0.88
3 0.0891 0. 0839 0.78
4 0.1084 0.1076 0.58
5 0.1267 0.1281 0. 46
10 0. 1467 0. 1505 0.18
o0 0. 1553 0. 1595 0.20
The proportion of sinmulations in which LR perforns
better (Q index)
Num of categ. X1 X2 Bot h
2 0.58 0.70 0. 88
3 0.50 0.44 0.78
4 0.36 0. 36 0.58
5 0.30 0.26 0.46
o0 0. 20 0. 20 0. 20
Paraneters: Z:{J- 0-ﬂ,u:O, n=n=200
0.5 1

Table 5b: Simulation results for different number of cateigsr(Figure 4a).

The proportion of sinulations in which LR perforns
better (Q index)

Num of categ. X1 X2 Bot h
2 0.48 0.40 0.74
3 0.28 0.24 0. 46
4 0. 26 0.24 0.32
5 0.24 0. 26 0.24
oo 0. 26 0. 26 0. 26
Par amet er s: 2:{3 ﬂ,u=n/4, mEn=200

Table 5c clearly shows the absence of any effect len result when we
categorise an insignificant variable (x1). The fesun the second and the third
column are practically the same, because categgrisity x2 variable is the same
as categorising both.

Table 5¢: Simulation results for different number of cateigsr(Figure 4b).

The proportion of sinulations in which LR perforns
better (Q index)

Num of categ. X1 X2 Bot h
2 0. 20 0.78 0.76
3 0.18 0.48 0.48
4 0.22 0.34 0.34
5 0. 20 0. 30 0. 30
o 0. 26 0. 20 0. 20

Par amet er s: 2:{1 ﬂ,uzo, mEn=200
01
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If the study of the categorisation effect is donetdling smaller samples, the
advantages of LDA are greater (see the previous®gc Therefore they do not
tail off even in the case of a small number of gatées. Table 5d presents the
results of an identical situation as in the lowartpof Table 5a, but the sample
size is shrunk to 100 units.

Table 5d: Simulation results for different number of cateigsr(Figure 4c).

The proportion of simulations in which LR perforns
better (Q index)

Num of categ. X1 X2 Bot h
2 0.42 0.24 0.54
3 0.34 0.32 0.42
4 0.24 0.22 0. 26
5 0.24 0. 30 0. 26
oo 0.22 0.22 0. 20

Par anet er s: Z:{J- 0-ﬂ,u:O, m=n=100
0.5 1

The results in this table tend to vary a bit. Tocam sample size, and at the
same time a small number of outcomes, causes thdtseto be unreliable. This is
even more obvious when the Mahalanobis distandecieased, because LR often
has problems with convergence.

5.3 Theeffect of non-normality

In the case of categorical explanatory variablesvabthe assumption of normality
has been preserved and only the consequences oétisneasurement have been
studied. Now, we are interested in the robustnds&@A when the normality
assumptions are not met and in how much bettel&abe in these cases. As non-
normality is a very broad term, we have confined eluss to transforming normal
distributions with a Box-Cox transformation and shmaking them skewed.

Again we begin with the three situations shown igufe 4 and transform them
into what is shown in Figure 5.

x2
X2

x1 x1 x1

Figure 5a, 5b and 5c: Examples of right skewed distributions (to makeups more
discernible, a part of the convex hull has beemwdréor each of them).
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Table 6a: Simulation results for different degree of skews@sigures 4c, 5c).

Q
CSs* LR LDA LR better
-0.5 0.3149 0. 2969 0.88
-0.4 0. 2685 0. 2610 0.78
-0.2 0. 2262 0. 2259 0. 60
-0.1 0.1885 0.1920 0.28
0.1 0.1269 0.1293 0.44
0.2 0.1025 0.1007 0. 60
0.4 0.0648 0. 0494 0.88
0.5 0. 0505 0.0267 0. 96

*Coef ficient of skewness

Parameters: y-|1 05| y=0, nmEn=200
05 1

The performance of LDA and LR does not depend @nstlyn of the skewness.
Therefore we have used the same transformationtimmd¢o check the impact of
the extent of separation of the groups at the same. Right skewness thus also
mean less separated groups. This is obvious ineT@h] as index Q is constantly
decreasing.

To be able to compare LR and LDA solely in termsskbwness we again
focus on the proportion of simulations where LR slbetter. Tables 6b, 6¢ and 6d
show the results for all the three cases we haserdeed in Figures 4 and 5. The
first two columns always show the results when omyg @f the two explanatory
variables is skewed, while in the third column batk transformed.

The trends we can see are rather similar. Whenskevness is small and
therefore the distribution close to normal, LDA foems better. But when the
skewness increases, LR becomes more and more otlydtatter.

Table 6b: Simulation results for different degree of skews1@sigures 4c, 5c¢).

The proportion of sinulations in which LR perforns

better (Q index)
CS* X1 X2 Bot h
-0.5 0.68 0.74 0.88
-0.4 0.50 0. 44 0.78
-0.2 0.38 0. 26 0. 60
-0.1 0.24 0.24 0.28
0.1 0.28 0.28 0. 44
0.2 0.38 0.42 0. 60
0.4 0.52 0.54 0.88
0.5 0. 58 0.64 0. 96

*Coef ficient of skewness

Parameters: y-|1 05| y=0, nmEn=200
05 1
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If both explanatory variables are skewed, the higlatue of skewness under
which LDA is still more appropriate is about +0,Y/e can observe that these
boundaries are the same regardless of the sepamitithe groups.

If only one of the covariates is asymmetric and ttteebone is left as normal,
the LDA is expectedly more robust — the interval &nd a bit and the trends again
remain similar with positive and negative skewnddse same effect on robustness
can be seen by lowering the sample size as discusgbd previous sections.

Table 6d again shows that transforming insignificaariables has no impact
on the results. However, it is impossible to cohtiee simulations to the extent
where we could say anything exact about the bounsladepending on the
significance of the variables.

Table 6¢: Simulation results for different degree of skews@Sigures 4a, 5a).

The proportion of simulations in which LR perforns
better (Q index)

CS* X1 X2 Bot h
-0.5 0.72 0.68 0. 96
-0.4 0.54 0.58 0. 80
-0.2 0. 38 0. 32 0.62
-0.1 0.16 0.18 0. 30
0.1 0.16 0. 20 0. 32
0.2 0. 28 0. 28 0.56
0.4 0. 50 0. 40 0. 86
0.5 0.58 0. 50 0.94

*Coef ficient of skewness

Par amet er s: 2:{1 0}, v=n/ 4, mEN=200
01

Table 6d: Simulation results for different degree of skewnéBigures 4b, 5b).

The proportion of sinulations in which LR perforns
better (Q index)

CS* X1 X2 Bot h
-0.5 0. 26 0.92 0.92
-0.4 0. 26 0. 84 0. 84
-0.2 0.26 0. 64 0. 64
-0.1 0. 26 0.32 0.32
0.1 0. 26 0. 38 0. 38
0.2 0. 26 0.62 0. 60
0.4 0. 26 0.92 0.92
0.5 0. 26 0.98 0.98

*Coef ficient of skewness

Par amet er s: 2:{1 0}, uv=0, nMEN=200
01
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X2

x1
Figure 6: Right skewness with shifted centroids.

In this study we have confined ourselves to situatiovhere the use of either
LDA or LR is sensible. Figure 6 presents a situatgomilar to the one in Figure
4c, but with the centroids of the groups being t&uifin a different direction.
While we can imagine sensible linear boundarieslmn Figures 5a, b and c, the
boundary curve in Figure 6 is obviously not lineaneTefore more work should be
done before using LDA or LR.

6 Conclusions and discussion

The goal of this paper was to compare logistic @sgion and linear discriminant
analysis in order to set some guidelines to makectimece between the methods
easier.

The methods do not differ in their functional fornishe difference rather lies
in the estimation of the coefficients and we haweeused our study on their
predictive power.

The literature offers several criteria for compansof the two methods. We
have discussed some of them and showed that tlesifitation error, although
most frequently used, is not appropriate in our cétsis not sensitive enough and
can be biased. We preferred the B and Q indexds, lbading to similar results in
the sense of comparison of the predictive powaheftwo methods.

The idea of comparisons was to start with normalstrécbuted covariates and
thus satisfy the LDA assumptions, and then to chekrobustness of the method
by moving away from the assumptions in a closely ciled way.

When the covariates are simulated from the normatridution, LDA of
course seems to be the more appropriate methodetenwthe results of the two
methods are really close when the sample size gelarhe main differences can
be observed for small samples, as their distribgigary too much for the LR to



Comparison of Logistic Regression and Linear... 159

be able to give good results. On the other hand)A lassumes normality. The
errors it makes in prediction are only due to theex in estimation of the mean
and the variance on the sample. To conclude, elengh LDA is a constantly
better method when the normality assumptions are thet differences between
the methods become negligible with a sample size&s@fand more, when the
methods differently allocate only about 0.5% of tlases.

When comparing the robustness towards categorisativse have again
assumed the explanatory variables to be normallyridiged, but discretely
measured. LDA remains the favourite method if thember of categories is big
enough to let the estimated mean and variancedsedb the population values of
the continuous explanatory variables. Usually, 5 gatees are enough, but in the
case of two or three categories, the advantagegbeol R prevail. The impact of
categorising the covariates of course depends ®gadtrelation with the outcome
variable. A variable with a small predictive poweill not considerably affect the
final result, whether we categorise it or not.

Whenever the explanatory variables are not normaByributed, the usage of
LDA is theoretically wrong, as the assumptions amated. The goodness-of-fit is
therefore only more or less coincidental. On theeothand, the LR fits well to
many types of distribution. The rationale for its iss been discussed extensively
in the literature (Cox, 1970). It has been showattmany types of underlying
assumptions lead to the same logistic formulati®nderson, 1972).

To illustrate the above conclusions we can takeoaklat two uniformly
distributed explanatory variables shown on the Fegda. The boundary between
the two groups is obvious and linear. LR therefdireds a straight line that
perfectly discriminates the data (7b). The LDA, heee again assumes
multivariate normal distribution in both groupshetellipses in Figure 7c show the
assumed normal distribution, calculated on the atithe means and variances of
the two groups. The linear boundary that followsnirahese calculations, of
course, is not optimal.

15

X2
1.0
1
X

X
X

0.0
1

Figure 7a, 7b and 7c: The behaviour of the LR and LDA in the case offannly
distributed covariates.
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Distributions that do not deviate much from normalcan be the only
exception to the above reasoning. In order to stildy, we have skewed the
normally distributed explanatory variables. In theeaf two covariates, the LDA
remains better than LR when the skewness is inrterval [-0.2,0.2]. If only one
of the explanatory variables is skewed, this intefgaa bit wider. Whenever the
distribution is obviously skewed (more than +0.9)e LR constantly gives better
results.

To conclude, we can say that LDA is a more apprdaerimaethod when the
explanatory variables are normally distributed. la tase of categorised variables,
LDA remains preferable and fails only when the numbe categories is really
small (2 or 3). The results of LR, however, arealhthese cases constantly close
and a little worse than those of LDA. But whenetee assumptions of LDA are
not met, the usage of LDA is not justified, whil®lgives good results regardless
of the distribution. As the estimates for LR aretaobed by the maximum
likelihood method, they have a number of nice asymptoroperties as well.
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