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Comparison of Logistic Regression and Linear 
Discriminant Analysis: A Simulation Study 

Maja Pohar1, Mateja Blas2, and Sandra Turk3 

Abstract 

Two of the most widely used statistical methods for analyzing 
categorical outcome variables are linear discriminant analysis and logistic 
regression. While both are appropriate for the development of linear 
classification models, linear discriminant analysis makes more assumptions 
about the underlying data. Hence, it is assumed that logistic regression is 
the more flexible and more robust method in case of violations of these 
assumptions. In this paper we consider the problem of choosing between the 
two methods, and set some guidelines for proper choice. The comparison 
between the methods is based on several measures of predictive accuracy. 
The performance of the methods is studied by simulations. We start with an 
example where all the assumptions of the linear discriminant analysis are 
satisfied and observe the impact of changes regarding the sample size, 
covariance matrix, Mahalanobis distance and direction of distance between 
group means. Next, we compare the robustness of the methods towards 
categorisation and non-normality of explanatory variables in a closely 
controlled way. We show that the results of LDA and LR are close 
whenever the normality assumptions are not too badly violated, and set 
some guidelines for recognizing these situations. We discuss the 
inappropriateness of LDA in all other cases. 

1 Introduction 

Linear discriminant analysis (LDA) and logistic regression (LR) are widely used 
multivariate statistical methods for analysis of data with categorical outcome
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variables. Both of them are appropriate for the development of linear  
classification models, i.e. models associated with linear boundaries between the 
groups. 

Nevertheless, the two methods differ in their basic idea. While LR makes no 
assumptions on the distribution of the explanatory data, LDA has been developed 
for normally distributed explanatory variables. It is therefore reasonable to expect 
LDA to give better results in the case when the normality assumptions are 
fulfilled, but in all other situations LR should be more appropriate. The theoretical 
properties of LR and LDA are thoroughly dealt with in the literature, however the 
choice of the method is often more related to the field of statistics than to the 
actual condition of fulfilled assumptions. 

The goal of this paper is not to discourage the current practice but rather to set 
some guidelines as to when the choice of either one of the methods is still 
appropriate. While LR is much more general and has a number of theoretical 
properties, LDA must be the better choice if we know the population is normally 
distributed. However, in practice, the assumptions are nearly always violated, and 
we have therefore tried to check the performance of both methods with 
simulations. This kind of research demands a careful control, so we have decided 
to study just a few chosen situations, trying to find a logic in the behaviour and 
then to think about the expansion onto more general cases. We have confined 
ourselves to compare only the predictive power of the methods. 

The article is organized as follows. Section 2 briefly reviews LR and LDA and 
explains their graphical representation. Section 3 details the criteria chosen to 
compare both methods. Section 4 describes the process of the simulations. The 
results obtained are presented and discussed in Section 5, starting with the case 
where all the assumptions of LDA are fulfilled and continuing with cases where 
normality is violated in sense of categorization and skewness. It is shown how 
violation of the assumptions of LDA affects both methods and how robust the 
methods are. The paper concludes with some guidelines for the choice between the 
models and a discussion. 

2 Logistic regression and linear discriminant analysis 

The goal of LR is to find the best fitting and most parsimonious model to describe 
the relationship between the outcome (dependent or response variable) and a set of 
independent (predictor or explanatory) variables. The method is relatively robust, 
flexible and easily used, and it lends itself to a meaningful interpretation. In LR, 
unlike in the case of LDA, no assumptions are made regarding the distribution of 
the explanatory variables. 

Contrary to the popular beliefs, both methods can be applied to more than two 
categories (Hosmer and Lemeshow, 1989, p. 216). To simplify, we only focus on 
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the case of a dichotomous outcome variable (Y). The LR model can be expressed 
as  
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where the Yi are independent Bernoulli random variables. The coefficients of this 
model are estimated using the maximum likelihood method. LR is discussed 
further by Hosmer and Lemeshow (1989). 

Linear discriminant analysis can be used to determine which variable 
discriminates between two or more classes, and to derive a classification model for 
predicting the group membership of new observations (Worth and Cronin, 2003). 
For each of the groups, LDA assumes the explanatory variables to be normally 
distributed with equal covariance matrices. The simplest LDA has two groups. To 
discriminate between them, a linear discriminant function that passes through the 
centroids of the two groups can be used. LDA is discussed further by Kachigan 
(1991). The standard LDA model assumes that the conditional distribution of X|y 
is multivariate normal with mean vector µy and common covariance matrix Σ. 
With some algebra we can show that we assign x to group 1 as 
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where α and β coefficients are 
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π1 and π0 are prior probabilities of belonging to group 1 and group 0. In practice 
the parameters π1, π0, µ1, µ0 and Σ will be unknown, so we replace them by their 
sample estimates, i. e.: 
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(2.2) is equal in form to LR. Hence, the two methods do not differ in functional 
form, they only differ in the estimation of coefficients. 
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2.1 Graphical representation: An explanation  

When the values of α and β are known, the expression for a set of points with 
equal probability of allocation can be derived as 
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In two-dimensional perspective this set of points is a line, while in three 

dimensions it is a plane. 
Figure 1 shows the scatterplot for two explanatory variables. Each of the two 

groups is plotted with a different character. The linear borders presented are 
calculated on the basis of the estimates of each method. The ellipses indicate the 
distributions assumed by the LDA. 
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Figure 1: The linear borders between the groups for LR (solid) and LDA (dotted line). 

3 Comparison criteria 

The simplest and the most frequently used criterion for comparison between the 
two methods is classification error (percent of incorrectly classified objects; CE). 
However, classification error is a very insensitive and statistically inefficient 
measure (Harrell, 1997). The fact is that the classification error is usually nearly 
the same in both methods, but, when differences exist, they are often 
overestimated (for example, if the threshold for “yes” is 0.50, a prediction of 0.99 
rates the same as one of 0.51). The minimum information gained with the 
classification error is in the case of categorical explanatory variables. The 
boundary lines in figures below differ approximately equally in coefficients, but 
the classification errors provide different information. In Figure 2a, one of the 
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possible outcomes lies in the area where the lines are different, and therefore the 
predictions will differ in all objects with this outcome. On the contrary, the area 
between the lines in Figure 2b covers none of the possible outcomes. The 
classification error therefore does not reveal any difference.  

1 2 3 4 5

1
2

3
4

5

x1

x2

1 2 3 4 5

1
2

3
4

5

x1

x2

 

Figure 2a and 2b: Examples of categorised explanatory variables. 

 
Since more information is needed regarding the predictive accuracy of the 

methods than just a binary classification rule, Harrell and Lee (1985) proposed 
four different measures of comparing predictive accuracy of the two methods. 
These measures are indexes A, B, C and Q. They are better and more efficient 
criteria for comparisons and they tell us how well the models discriminate between 
the groups and/or how good the prediction is. Theoretical insight and experiences 
with simulations revealed that some indexes are more and some less appropriate at 
different assumptions. In this work, we focus on three measures of predictive 
accuracy, the B, C and Q indexes. Because of its intuitive clearness we sometimes 
add the classification error (CE) as well. 

The C index is purely a measure of discrimination (discrimination refers to the 
ability of a model to discriminate or separate values of Y). It is written as follows 
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where Pk denotes an estimate of P(Yk=1|Xk) from (2.1) and I is an indicator 
function.  

We can see that the value of the C index is independent of the actual group 
membership (Y), and as such it is only a measure of discrimination between the 
groups, and not a measure of accuracy of prediction. A C index of 1 indicates 
perfect discrimination; a C index of 0.5 indicates random prediction. 
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The B and Q indexes can be used to assess the accuracy of the outcome 
prediction. The B index measures an average of squared difference between an 
estimated and actual value: 
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where Pi is a probability of classification into group i, Yi is the actual group 
membership (1 or 0), and n is the sample size of both populations. The values of 
the B index are on the interval [0,1], where 1 indicates perfect prediction. In the 
case of random prediction in two equally sized groups, the value of the B index is 
0.75.  

The Q index is similar to the B index and is also a measure of predictive 
accuracy: 
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A score of 1 of the Q index indicates perfect prediction. A Q index of 0 indicates 
random predictions, and values less than 0 indicate worse than random predictions. 
When predicted probabilities of 0 or 1 exist, the Q index is undefined. The B, C 
and Q indexes are discussed further by Harrell and Lee (1985).  

While the C index is purely a measure of discrimination, the B and Q indexes 
(besides discrimination) also consider accuracy of prediction. Hence, we can 
expect these two indexes to be the most sensitive measures in our simulations. 
Instead of comparing the indexes directly, we will often focus only on the 
proportion of simulations in which LR predicts better than LDA. As we always 
perform 50 simulations, this proportion will be statistically significant whenever it 
lies outside the interval [0.36, 0.64]. 

4 Description of the Simulations 

4.1 Basic function 
 
The basic function enables us to draw random samples of size n and m from two 
multivariate normal populations with different mean vectors, but equal covariance 
matrix Σ. The mean vector of one group is always set at (0,0). The distance to the 
other one is measured using Mahalanobis distance, while the direction is set as the 
angle (denoted by υ) to the direction of the eigenvector of the covariance matrix. 

Each sample is then randomly divided into two parts, a training and a test 
sample. The coefficents of LDA and LR are computed using the first sample and 
then predictions are made in the second one. The sampling experiment is 
replicated 50 times. Each time the indexes for both methods are computed. Finally, 
the average value of indexes and the proportion of simulations in which LR 
performs better are recorded. 
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4.2 Categorization 

After sampling, the normally distributed variables can be categorised, either only 
one or both of them. The minimum and maximum value are computed, then the 
whole interval is divided into a certain number of categories of equal size.  

4.3 Skewness 

As in the case of categorization, we can also decide here to transform only one of 
two explanatory variables or both of them. The Box-Cox type of transformation 
(Box and Cox, 1964) is used to make normal distribution skewed. 

4.4 Remarks 

To ensure clarity of the graphical representation, we have confined ourselves to a 
two- dimensional perspective, i.e. two explanatory variables. We have nevertheless 
made some simulations in more dimensions, but the trends of the results seemed to 
follow the same pattern. 

In most of the simulations we have also set an upper limit for the Mahalanobis 
distance, in order to prevent LR from failing to converge and LDA from giving 
unreliable results. 

To simplify, we have fixed the two group sizes as the same. As unequally sized 
groups (or unequal a prori probabilities in LR) only shift the border line closer to 
the smaller group (the one with the less probable outcome), this only impacts the 
constant, while the coefficient estimates remain the same. 

All the simulations and computations were performed by using the statistical 
software package R. 

5 Results 

5.1 Comparison of methods when LDA assumptions are satisfied 
 
We start from the situation where both explanatory variables are normally 
distributed. We observe the impact of changes connected with the parameters: 
sample size, covariance matrix, Mahalanobis distance and direction of distance 
between the group means. 

The sample size has the most obvious impact on the difference between 
methods. LDA assumes normality and the errors it makes in prediction are only 
due to the errors in estimation of the mean and variance on the sample. On the 
contrary, LR adapts itself to distribution and assumes nothing about it. Therefore, 
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in the case of small samples, the difference between the distribution of the training 
sample and that of the test sample can be substantial. But, as the sample size 
increases, the sampling distributions become more stable which leads to better 
results for the LR. Consequently, the results of the two methods are getting closer 
because the populations are normally distributed. 

Table 1: Simulation results for the effect of sample size (n). 

  B C Q CE 

n LR LDA LR LDA LR LDA LR LDA 

40 0.7747 0.7861 0.7190 0.7199 0.0489 0.1089 0.1785 0.1700 

60 0.7846 0.7925 0.7405 0.7405 0.1029 0.1334 0.1693 0.1647 

100 0.7939 0.7993 0.7593 0.7590 0.1313 0.1541 0.1591 0.1527 

200 0.7967 0.7982 0.7536 0.7537 0.1456 0.1514 0.1593 0.1585 

1000 0.8008 0.8011 0.7609 0.7609 0.1595 0.1608 0.1550 0.1543 

 
The proportion of simulations in which LR performs better 

  B C Q CE 

N LR better same LR better same LR better same LR better same 

40 0.18 0.00 0.36 0.18 0.14 0.00 0.24 0.32 

60 0.20 0.00 0.36 0.28 0.20 0.00 0.36 0.28 

100 0.20 0.00 0.48 0.16 0.22 0.00 0.26 0.18 

200 0.24 0.00 0.48 0.08 0.24 0.00 0.36 0.24 

1000 0.26 0.00 0.62 0.00 0.30 0.00 0.32 0.18 

Parameters: =
15.0

5.01Σ , υ=π/4 
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Figure 3: The impact of sample size of n=50 (left), n=100 (middle) and n=200 (right).  

The results from Table 1 confirm the consideration above. As the sample size 
increases, the LDA coefficient estimations become more accurate and therefore all 
four indexes are improving (bold face is used to highlight the method that 
performs better). The LR indexes are increasing even faster, thus approaching 
those of LDA. Decreasing difference between the two methods is best presented 
with the Q index, which is the most sensitive one. As the differences between 
index means are negligible, it is also interesting to look at the proportion of 
simulations where LR performs better. It can be seen that the value of rates to 
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which we pay special attention, that of B index and of Q index, is constantly 
increasing. 

In the case of other changes (tables below) the results of the two methods 
remain very close, in fact LDA is only a little bit better than LR. The exception 
appears in the case of large Mahalanobis distance presented in Table 4. We can see 
that for low values of Mahalanobis distance LDA yields better results, but as this 
distance increases and it takes values above 2, LR performs better.  

 

Table 2: Simulation results for the effect of correlation between explanatory 
variables(σ). 

  B C Q CE σ LR LDA LR LDA LR LDA LR LDA 

0 0.7938 0.7979 0.7536 0.7533 0.1340 0.1499 0.1623 0.1587 

0.20 0.7909 0.7967 0.7490 0.7495 0.1215 0.1456 0.1629 0.1587 

0.50 0.7925 0.7965 0.7497 0.7498 0.1291 0.1456 0.1601 0.1580 

0.90 0.7961 0.7990 0.7568 0.7567 0.1403 0.1535 0.1575 0.1561 

 
The proportion of simulations in which LR performs better 

  B C Q CE Σ LR better same LR better same LR better same LR better same 

0 0.20 0.00 0.54 0.12 0.26 0.00 0.30 0.22 

0.20 0.12 0.00 0.32 0.12 0.18 0.00 0.20 0.36 

0.50 0.20 0.00 0.44 0.12 0.20 0.00 0.34 0.22 

0.90 0.20 0.00 0.46 0.18 0.26 0.00 0.32 0.30 

 
Parameters: υ= π/4, m=n=50 
 
 

Table 3: Simulation results for the effect of direction of distance between group 
means(υ). 

  B C Q CE ν LR LDA LR LDA LR LDA LR LDA 

0 0.7928 0.7969 0.7502 0.7501 0.1322 0.1475 0.1629 0.1609 Π/4  0.7957 0.7989 0.7548 0.7547 0.1392 0.1524 0.1579 0.1565 Π/3  0.7991 0.8029 0.7642 0.7645 0.1491 0.1644 0.1511 0.1480 Π/2 0.7966 0.8012 0.7620 0.7619 0.1428 0.1613 0.1579 0.1569 

 
The proportion of simulations in which LR performs better ν B C Q CE 

 LR better same LR better same LR better same LR better same 

0 0.18 0.00 0.44 0.14 0.16 0.00 0.28 0.36 Π/4  0.30 0.00 0.44 0.26 0.36 0.00 0.34 0.18 Π/3  0.22 0.00 0.40 0.14 0.28 0.00 0.24 0.34 Π/2 0.22 0.00 0.36 0.30 0.24 0.00 0.32 0.30 

Parameters: =
15.0

5.01Σ , m=n=50 
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Table 4: Simulation results for the effect of Mahalanobis distance (M). 

 B C Q CE 

M LR LDA LR LDA LR LDA LR LDA 

0.50 0.7687 0.7697 0.6769 0.6767 0.0525 0.0554 0.1889 0.1871 

1.00 0.7947 0.7985 0.7552 0.7551 0.1331 0.1512 0.1606 0.1569 

1.25 0.8014 0.8067 0.7741 0.7747 0.1568 0.1799 0.1486 0.1458 

2.00 0.8305 0.8315 0.8372 0.8374 0.2612 0.2650 0.1241 0.1224 

3.00 0.8570 0.8557 0.8857 0.8860 0.3575 0.3492 0.1026 0.0975 

4.50 0.8922 0.8816 0.9310 0.9305 0.4994 0.4398 0.0756 0.0747 

 
The proportion of simulations in which LR performs better 

 B C Q CE 

M LR better same LR better same LR better same LR better same 

0.50 0.46 0.00 0.46 0.22 0.52 0.00 0.38 0.26 

1.00 0.24 0.00 0.42 0.24 0.28 0.00 0.30 0.30 

1.25 0.20 0.00 0.20 0.22 0.16 0.00 0.22 0.38 

2.00 0.56 0.00 0.36 0.28 0.60 0.00 0.28 0.30 

3.00 0.60 0.00 0.38 0.22 0.70 0.00 0.26 0.24 

4.50 0.90 0.00 0.42 0.08 0.90 0.00 0.26 0.40 

Parameters: =
15.0

5.01Σ , υ= π/4, m=n=50 
 
 
To sum up, we can say that in the case of normality LDA yields better results 

than LR. However, for very large sample sizes the results of the two methods 
become really close.  

5.2 The effect of categorisation 

The effect of categorisation is studied under the assumption that the explanatory 
variables are in fact normally distributed, but measured only discretely. This 
means they only have a limited number of values or categories. When the number 
of categories is big enough not to disturb the accuracy of the estimates, the 
categorisation will not cause any changes in our results. But when the values are 
forced into just a few categories, we can expect more discrepancies. 

All the simulations in this section are performed in the following way: First, 
the values of the indexes for LR and LDA are calculated for the samples from the 
normally distributed population. We start from the situation, where the LDA 
performs better as shown in the previous section (in the tables, these results are 
denoted with ∞). These samples are then categorised into a certain number of 
categories and the indexes are again calculated and compared. 

As expected, the effect of the categorisation depends somewhat on the data 
structure (the correlation among the variables), but nevertheless, in all the 
simulations similar trends can be observed. 

Linear discriminant analysis proves to be rather robust. Its prediction power is 
not much lower when the values are in 5 or more categories, and it usually 
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performs better than LR. The story changes when the number of categories is low, 
and LR is the only appropriate choice in the binary case. 

The effect of categorisation also depends on the significance of the effect of a 
certain explanatory variable on the outcome. This is understandable – a 
nonsignificant variable will not change the model if transformed. On the other 
hand, if two covariates, equally powerful when predicting the result, are 
categorised, each of them will have a similar impact on the result. 
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Figure 4a, 4b and 4c: The basic situations used in the study. The ellipses describe the 

distributions within the groups. 

We have studied the impact of categorisation in two extreme and one 
intermediate case. Figures below present the situations that were the basis of our 
simulations. Figure 4a presents two uncorrelated explanatory variables with a 
similar impact on the outcome. In Figure 4b only one of the variables is 
significant, while in Figure 4c the covariates are correlated and both have a 
significant but different impact on the outcome variable. 

Table 5a summarizes the results of the situation shown in Figure 4c. The upper 
part of this table contains the Q indexes for the case in which both covariates are 
categorised. It can be seen that the categorisation into only two categories 
severally lowers the predictive power of the two variables (the Q index falls close 
to zero) and that this effect is greater with LDA. For better clarity, the lower part 
of this table concentrates only on the proportion of the simulations in which the 
LR performs better (with regard to index Q) and compares these results with the 
categorisation of only one variable at a time. It is obvious that LR always 
outperforms LDA in the binary case. As discussed above, this effect is greater 
when we categorise the more significant variable (x2) and even more so when we 
categorise both explanatory variables. 

The results summed up in Table 5b are similar. The effect of both x1 and x2 is 
similar and therefore the trends are even more comparable. However, logistic 
regression is not truly better even in the two category case. That is probably due to 
the too big “head start” of LDA. When categorising both covariates the advantages 
of LR are again more obvious. 
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Table 5a: Simulation results for different number of categories (Figure 4c). 

  Q 

Num. of categ. LR LDA LR better 

2 0.0712 0.0579 0.88 

3 0.0891 0.0839 0.78 

4 0.1084 0.1076 0.58 

5 0.1267 0.1281 0.46 

10 0.1467 0.1505 0.18 ∞ 0.1553 0.1595 0.20 

  
The proportion of simulations in which LR performs 

better  (Q index) 

Num. of categ. x1 x2 Both 

2 0.58 0.70 0.88 

3 0.50 0.44 0.78 

4 0.36 0.36 0.58 

5 0.30 0.26 0.46 ∞ 0.20 0.20 0.20 

Parameters: =
15.0

5.01Σ ,υ=0, m=n=200 
 

Table 5b: Simulation results for different number of categories (Figure 4a). 

 

  
The proportion of simulations in which LR performs 

better  (Q index) 

Num. of categ. x1 x2 Both 

2 0.48 0.40 0.74 

3 0.28 0.24 0.46 

4 0.26 0.24 0.32 

5 0.24 0.26 0.24 ∞ 0.26 0.26 0.26 

Parameters: =
10

01Σ ,υ=π/4, m=n=200 
 
Table 5c clearly shows the absence of any effect on the result when we 

categorise an insignificant variable (x1). The results in the second and the third 
column are practically the same, because categorising only x2 variable is the same 
as categorising both. 

Table 5c: Simulation results for different number of categories (Figure 4b). 

  
The proportion of simulations in which LR performs 

better  (Q index) 

Num. of categ. x1 x2 Both 

2 0.20 0.78 0.76 

3 0.18 0.48 0.48 

4 0.22 0.34 0.34 

5 0.20 0.30 0.30 ∞ 0.26 0.20 0.20 

Parameters: =
10

01Σ ,υ=0, m=n=200 
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If the study of the categorisation effect is done by taking smaller samples, the 
advantages of LDA are greater (see the previous section). Therefore they do not 
tail off even in the case of a small number of categories. Table 5d presents the 
results of an identical situation as in the lower part of Table 5a, but the sample 
size is shrunk to 100 units. 
 

Table 5d: Simulation results for different number of categories (Figure 4c). 

  
The proportion of simulations in which LR performs 

better  (Q index) 

Num. of categ. x1 x2 Both 

2 0.42 0.24 0.54 

3 0.34 0.32 0.42 

4 0.24 0.22 0.26 

5 0.24 0.30 0.26 ∞ 0.22 0.22 0.20 

Parameters: =
15.0

5.01Σ ,υ=0, m=n=100 
The results in this table tend to vary a bit. Too small a sample size, and at the 

same time a small number of outcomes, causes the results to be unreliable. This is 
even more obvious when the Mahalanobis distance is increased, because LR often 
has problems with convergence.  

5.3 The effect of non-normality 

In the case of categorical explanatory variables above, the assumption of normality 
has been preserved and only the consequences of discrete measurement have been 
studied. Now, we are interested in the robustness of LDA when the normality 
assumptions are not met and in how much better can LR be in these cases. As non-
normality is a very broad term, we have confined ourselves to transforming normal 
distributions with a Box-Cox transformation and thus making them skewed.  

Again we begin with the three situations shown in Figure 4 and transform them 
into what is shown in Figure 5. 
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Figure 5a, 5b and 5c: Examples of right skewed distributions (to make groups more 
discernible, a part of the convex hull has been drawn for each of them). 
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Table 6a: Simulation results for different degree of skewness (Figures 4c, 5c). 

 
  Q 

CS* LR LDA LR better 

-0.5 0.3149 0.2969 0.88 

-0.4 0.2685 0.2610 0.78 

-0.2 0.2262 0.2259 0.60 

-0.1 0.1885 0.1920 0.28 

0.1 0.1269 0.1293 0.44 

0.2 0.1025 0.1007 0.60 

0.4 0.0648 0.0494 0.88 

0.5 0.0505 0.0267 0.96 

*Coefficient of skewness 

Parameters: =
15.0

5.01Σ ,υ=0, m=n=200 
 
The performance of LDA and LR does not depend on the sign of the skewness. 

Therefore we have used the same transformation function to check the impact of 
the extent of separation of the groups at the same time. Right skewness thus also 
mean less separated groups. This is obvious in Table 6a, as index Q is constantly 
decreasing. 

To be able to compare LR and LDA solely in terms of skewness we again 
focus on the proportion of simulations where LR does better. Tables 6b, 6c and 6d 
show the results for all the three cases we have described in Figures 4 and 5. The 
first two columns always show the results when only one of the two explanatory 
variables is skewed, while in the third column both are transformed. 

The trends we can see are rather similar. When the skewness is small and 
therefore the distribution close to normal, LDA performs better. But when the 
skewness increases, LR becomes more and more constantly better. 
 

Table 6b: Simulation results for different degree of skewness (Figures 4c, 5c). 

  
The proportion of simulations in which LR performs 

better  (Q index) 

CS* x1 x2 Both 

-0.5 0.68 0.74 0.88 

-0.4 0.50 0.44 0.78 

-0.2 0.38 0.26 0.60 

-0.1 0.24 0.24 0.28 

0.1 0.28 0.28 0.44 

0.2 0.38 0.42 0.60 

0.4 0.52 0.54 0.88 

0.5 0.58 0.64 0.96 

*Coefficient of skewness 

Parameters: =
15.0

5.01Σ ,υ=0, m=n=200 
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If both explanatory variables are skewed, the highest value of skewness under 
which LDA  is still more appropriate is about ±0,2. We can observe that these 
boundaries are the same regardless of the separation of the groups. 

If only one of the covariates is asymmetric and the other one is left as normal, 
the LDA is expectedly more robust – the interval widens a bit and the trends again 
remain similar with positive and negative skewness. The same effect on robustness 
can be seen by lowering the sample size as discussed in the previous sections. 

Table 6d again shows that transforming insignificant variables has no impact 
on the results. However, it is impossible to control the simulations to the extent 
where we could say anything exact about the boundaries depending on the 
significance of the variables. 
 

Table 6c: Simulation results for different degree of skewness (Figures 4a, 5a). 

  
The proportion of simulations in which LR performs 

better  (Q index) 

CS* x1 x2 Both 

-0.5 0.72 0.68 0.96 

-0.4 0.54 0.58 0.80 

-0.2 0.38 0.32 0.62 

-0.1 0.16 0.18 0.30 

0.1 0.16 0.20 0.32 

0.2 0.28 0.28 0.56 

0.4 0.50 0.40 0.86 

0.5 0.58 0.50 0.94 

*Coefficient of skewness 

Parameters: =
10

01Σ , υ=π/4, m=n=200 
 

Table 6d: Simulation results for different degree of skewness (Figures 4b, 5b). 

  
The proportion of simulations in which LR performs 

better  (Q index) 

CS* x1 x2 Both 

-0.5 0.26 0.92 0.92 

-0.4 0.26 0.84 0.84 

-0.2 0.26 0.64 0.64 

-0.1 0.26 0.32 0.32 

0.1 0.26 0.38 0.38 

0.2 0.26 0.62 0.60 

0.4 0.26 0.92 0.92 

0.5 0.26 0.98 0.98 

*Coefficient of skewness 

Parameters: =
10

01Σ , υ=0, m=n=200 
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Figure 6: Right skewness with shifted centroids. 

In this study we have confined ourselves to situations where the use of either 
LDA or LR is sensible. Figure 6 presents a situation similar to the one in Figure 
4c, but with the centroids of the groups being shifted in a different direction. 
While we can imagine sensible linear boundaries on the Figures 5a, b and c, the 
boundary curve in Figure 6 is obviously not linear. Therefore more work should be 
done before using LDA or LR.  

6 Conclusions and discussion 

The goal of this paper was to compare logistic regression and linear discriminant 
analysis in order to set some guidelines to make the choice between the methods 
easier. 

The methods do not differ in their functional forms. The difference rather lies 
in the estimation of the coefficients and we have focused our study on their 
predictive power.  

The literature offers several criteria for comparison of the two methods. We 
have discussed some of them and showed that the classification error, although 
most frequently used, is not appropriate in our case. It is not sensitive enough and 
can be biased. We preferred the B and Q indexes, both leading to similar results in 
the sense of comparison of the predictive power of the two methods.  

The idea of comparisons was to start with normally distributed covariates and 
thus satisfy the LDA assumptions, and then to check the robustness of the method 
by moving away from the assumptions in a closely controlled way.  

When the covariates are simulated from the normal distribution, LDA of 
course seems to be the more appropriate method. However, the results of the two 
methods are really close when the sample size is large. The main differences can 
be observed for small samples, as their distributions vary too much for the LR to 
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be able to give good results. On the other hand,  LDA assumes normality. The 
errors it makes in prediction are only due to the errors in estimation of the mean 
and the variance on the sample. To conclude, even though LDA is a constantly 
better method when the normality assumptions are met, the differences between 
the methods become negligible with a sample size of 50 and more, when the 
methods differently allocate only about 0.5% of the cases. 

When comparing the robustness towards categorisation, we have again 
assumed the explanatory variables to be normally distributed, but discretely 
measured. LDA remains the favourite method if the number of categories is big 
enough to let the estimated mean and variance be close to the population values of 
the continuous explanatory variables. Usually, 5 categories are enough, but in the 
case of two or three categories, the advantages of the LR prevail. The impact of 
categorising the covariates of course depends on its correlation with the outcome 
variable. A variable with a small predictive power will not considerably affect the 
final result, whether we categorise it or not. 

Whenever the explanatory variables are not normally distributed, the usage of 
LDA is theoretically wrong, as the assumptions are violated. The goodness-of-fit is 
therefore only more or less coincidental. On the other hand, the LR fits well to 
many types of distribution. The rationale for its use has been discussed extensively 
in the literature (Cox, 1970). It has been shown that many types of underlying 
assumptions lead to the same logistic formulation (Anderson, 1972).  

To illustrate the above conclusions we can take a look at two uniformly 
distributed explanatory variables shown on the Figure 7a. The boundary between 
the two groups is obvious and linear. LR therefore finds a straight line that 
perfectly discriminates the data (7b). The LDA, however, again assumes 
multivariate normal distribution in both groups – the ellipses in Figure 7c show the 
assumed normal distribution, calculated on the basis of the means and variances of 
the two groups. The linear boundary that follows from these calculations, of 
course, is not optimal.  
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Figure 7a, 7b and 7c: The behaviour of the LR and LDA in the case of uniformly 
distributed covariates. 
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Distributions that do not deviate much from normality can be the only 
exception to the above reasoning. In order to study this, we have skewed the 
normally distributed explanatory variables. In the case of two covariates, the LDA 
remains better than LR when the skewness is in the interval [-0.2,0.2]. If only one 
of the explanatory variables is skewed, this interval is a bit wider. Whenever the 
distribution is obviously skewed (more than ±0.5), the LR constantly gives better 
results. 

To conclude, we can say that LDA is a more appropriate method when the 
explanatory variables are normally distributed. In the case of categorised variables, 
LDA remains preferable and fails only when the number of categories is really 
small (2 or 3). The results of LR, however, are in all these cases constantly close 
and a little worse than those of LDA. But whenever the assumptions of LDA are 
not met, the usage of LDA is not justified, while LR gives good results regardless 
of the distribution. As the estimates for LR are obtained by the maximum 
likelihood method, they have a number of nice asymptotic properties as well.  
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