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A Comparison of Different Approaches to 
Hierarchical Clustering of Ordinal Data 
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Abstract 

The paper tries to answer the following question: “How should we treat 
ordinal data in hierarchical clustering?” The question is strongly connected 
to the use of questionnaires with ordinal scales in the social sciences. The 
results could help to differentiate among answers to the questions from 
questionnaires that could be considered as scale variables, those it would be 
better to convert to ranks and those that should be treated as nominal 
variables. To make the results general several two-dimensional 
combinations of group sizes, shapes and differences between their centers 
were used as well as one three-dimensional combination. Each combination 
was simulated both with and without unessential variables. 

All datasets consisted of 3 groups, each with its own multivariate 
distribution (2 or 3 variables) with known means and covariances.  

From each design several datasets were simulated. Each variable was cut 
and recoded to achieve an ordinal scale. Different cutting schemes were 
used (the intervals were of equal size, either increasing/decreasing from the 
lowest to the highest value or decreasing from the mean to both extremes). 
These new variables were then treated as interval, converted to ranks and 
treated as nominal. Then hierarchical clustering algorithms were used. 
Ward's algorithm with Squared Euclidean distance was used when data were 
considered interval or converted to ranks, and Ward's algorithm with 
matching coefficient as dissimilarity measure was used when they were 
considered nominal. 

The quality of the results was assessed by comparing the gained 
partitions with the three original groups. We also compared results from 
clustering the original (uncut) data with the three original groups for 
comparison. The comparison was made using Corrected Rand Index. The 
results indicate that in most cases treating the data as interval or converting 
them to ranks yields better results than treating them as nominal, but the 
differences are sometimes diminished when cutting into a smaller number of 
intervals. 
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1 Introduction 

The paper tries to answer the following question: “How should we treat ordinal 
data in hierarchical clustering?” Measurements in the social sciences are often 
done with an ordinal scale, usually using questionnaires with categorical scales of 
3 to 9 categories. The results of these measurements are ordinal data. However, 
many statistical methods are not suitable to handle this kind of data.  

One of them is hierarchical clustering. The problem when dealing with ordinal 
data in hierarchical clustering lies in how to compute the dissimilarity matrix 
(distances among units). Dissimilarity matrix is the input of several different 
clustering algorithms. We used Ward’s algorithm (Ward, 1963), one of the most 
commonly used clustering algorithms. The different procedures we used thus differ 
only in the way the dissimilarity matrix is computed, which mainly depends on the 
assumptions about the nature of the data (interval, ordinal, nominal). 

The purpose of this paper is to determine which of the different procedures 
used outperforms the others and under which circumstances. To achieve this, all 
procedures were tested on a number of two-dimensional data designs (a 
combination of group covariance matrices and sizes of three groups), distances 
among population means and number of unessential variables.  

50 repetitions of each data design combination (which was cut with respect to 
different parameters to produce ordinal data) were made in order to obtain more 
reliable results.  

The simulation was also done on a specific three-dimensional data design. In a 
similar manner to the two-dimensional designs we simulated three groups, each 
from a different three-dimensional normal distribution. 

2 Simulation of the data 

In order to test different clustering procedures, we first had to simulate the data on 
which we could apply these procedures. As mentioned, we started by simulating 
three groups, each simulated from a different two or three-dimensional normal 
distribution. These groups were simulated 50 times – that is, the whole process of 
simulation, clustering and assessment was repeated 50 times for each setting (data 
design combination). The three different distances among population means for 
data design 1 are presented in Figure 1. The same three sets of distances among 
population means were used in combination with all two-dimensional data designs. 
The remaining two-dimensional data designs (2 to 7) are shown in Figure 2. Only 
the first set of distances among population means is shown. The black dots in the 
graphs represent an example of an actual simulation of the data setting, while gray 
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dots represent a result of a simulation where the number of cases in each group 
was multiplied by 100. All of these combinations were simulated with zero, one 
and two unessential variables. 

-4 -2 0 2 4

-4
-2

0
2

4

design1 
 distMeans 1

-4 -2 0 2 4

-4
-2

0
2

4

design1 
 distMeans 2

-4 -2 0 2 4

-2
0

2
4

6

design1 
 distMeans 3

 

Figure 1: Data design 1 with different sets of distances among population means. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Data designs 2 to 7 with distances between population means 1. 

 
The design and distances among group means for the three-dimensional case is 

shown in Table 1. In Figure 3 we can see an example of the simulated data, one of 
the 50 cases. As can be seen, the groups differ in their centers or mean vectors, in 
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their covariance matrices and in size (number of units). They also slightly overlap. 
These groups were simulated with unessential variables – zero, one and three.2 
 

Table 1: Design for the simulated groups. 

 

Group number 
µ (vector of 

population means) 
Σ (population covariance 

matrix) 
Number of 

units 

1 (-5,1,2)  400

025,209

0925,6
 50 

2 (8,2.1,-2) −
−

−−

41,425,504,5

25,52517

04,51716
 30 

3 (1,-20,12)  −
−−

−

366,578,1

6,571448,10

8,18,109
 20 

 
 
 

 

 

Figure 3: An example of the three-dimensional simulated data. The numbers indicate 
group membership. 

                                                 
2 Here the largest number of unessential variables is 3. It equals the number of essential 

variables in the dataset. 
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3 Cutting the interval data into categories (ordinal 
data) 

Though we described the process of simulating interval data, the purpose of this 
paper is to test several procedures of hierarchical clustering on ordinal data. With 
this in mind, we transformed interval data into ordinal data by cutting the variables 
into categories in several different ways. In this process we varied the following 
parameters: 

• Number of categories (noClass) 

• Type of cutting (typeCut) 

• Extension factor (f) 

Let us first describe these parameters. 

 

3.1 Number of categories 
 
The first parameter provides the number of categories into which values of the 
original variables were recoded. The values of the original variables were cut into 
intervals (their number matches the number of categories). All values in the same 
interval were then recoded into the same value, namely the sequential number of 
the interval (e.g. values within the interval with the lowest values were recoded 
into 1). In our simulation, we recoded the interval variable into 3, 4 and 5 
categories. In all cases, values of both or all three interval variables used were 
recoded into the same number of categories, the values of each variable entered 
separately. Cutoff points differed from variable to variable, but the parameters 
were the same. 
 

3.2 Type of cutting 
 
This parameter shows how the direction in which the widths of the interval  
increase was determined. We used the following types of cutting: 

• no-sayers: The values of the original interval variables are cut in a way 
such that the first interval is the widest and each subsequent interval is 
narrower – this corresponds to asymmetrically formed categories (more 
categories at the end of the scale) or the answers of subjects who tend to 
disagree. 

• yes-sayers: Opposite to the first type (the first interval is the narrowest and 
each subsequent interval is wider) – this corresponds to asymmetrically 
formed categories (more categories at the beginning of the scale) or the 
answers of subjects who tend to agree. 
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I I I I I I

Type of cutting = 'simple'
1 2 3 4 5

I I I I I I

Type of cutting = 'yes-sayers'
1 2 3 4 5

I I I I I I

Type of cutting = 'no-sayers'
1 2 3 4 5

I I I I I I

Type of cutting = 'average'
1 2 3 4 5

• average: The widest interval is at the center and intervals narrow in both 
directions from the center – this corresponds to a scale with wide 
categories at the center (more categories at the extremes of the scale) or the 
answers of subjects who tend to try to blend in. 

• simple: All intervals are of equal width – this corresponds to symmetrically 
formed categories or subjects who answer “correctly”. 

• mix: We randomly chose one of the types of cutting above for each unit 
based on the probabilities that we assumed3 to represent the portion of 
subjects from a population that would answer in such a way – this would 
correspond to a real sample from a population answering questions with  
symmetrically formed categories. We assumed the following probabilities: 

• P(yes-sayers) = P(no-sayers) = 0.14 

• P(average) = 0.29 

• P(simple) = 0.43. 

The effects of type of cutting on the borders of the intervals are seen in Figure 
4. The figure presents the case with extension factor 2 and 5 categories. There are 
four different lines split into intervals. The value above each interval is that which 
would be assigned to all cases within that interval for the variable recoded at a 
given time.  The type of cutting is also indicated. 

 
 
 

 

 

 

 

 

 
 
 

Figure 4: The effect of the type of cutting. 

 

                                                 
3 The assumed probabilities were based on the results of the research “Drobno gospodarstvo v 

Sloveniji” by Professor Dr. Janez Prašnikar of University of Ljubljana (Faculty of Economics) 
and review of the “Slovensko javno mnenje” (Toš et. Al., 1999). 
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3.3 Extension factor  
 
This parameter determines how much wider each subsequent interval is than the 
previous one, looking in the direction defined by the type of cutting. f is actually 
the parameter of the geometric sequence (e.g. if the starting interval is of width i , 
then the next is of width i*f ). If f = 1, then all intervals are of equal width 
irrespective of type of cutting. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5: The effect of the extension factor. 

 
The effects of the extension factor on the interval borders are seen in Figure 5. 

In the figure the case with type of cutting yes-sayers and 5 categories is presented. 
Again there are four different lines split into intervals. Above each interval we can 
see the value that would be assigned to all cases within that interval for the 
variable recoded at a given time. The extension factor is indicated above the 
values. 

4 Computation of the dissimilarity matrices 

The usual input of the hierarchical clustering algorithm is the dissimilarity matrix. 
In this paper we treated data in three different ways (as interval, as ordinal and as 
nominal), although we know they are ordinal. These different treatments 
influenced the procedures for computing dissimilarity matrices. Actually this is the 
only part of the computations that differs from procedure to procedure. 
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4.1 Interval data 
 
When treating data (ordinal variables, which were the result of the recoding 
described in the previous section) as interval, we used these transformed (recoded) 
data and computed the dissimilarity matrix by Squared Euclidean distance:  

d(X,Y) =Σ(xi - yi)
2, where X and Y represent two different units and xi and yi 

their values at the ith variable. 

 
4.2 Ordinal data 
 
When treating data as ordinal4, we first computed ranks for values of each 
(transformed) variable respectively and then computed the dissimilarity matrix on 
these ranks by Squared Euclidean distance (as before): 

d(X,Y) =Σ(xi - yi)
2, where X and Y represent two different units and xi and yi 

their values at the ith variable. 
 
4.3 Nominal data 
 
When treating data as nominal, our dissimilarity measure was simply the number 
of variables with different values, a matching coefficient:  

 d(X,Y) = 


≠
=
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    ;
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X and Y again represent two different units and xi and yi their values at the ith 
variable. 

5 Hierarchical clustering procedure 

The dissimilarity matrices were used as an input in the Ward hierarchical 
clustering algorithm (Ward, 1963). Numerous empirical comparisons have shown 
that Ward’s method is the most suitable method for spherical data (e.g. Everitt, 
1974; Mojena, 1978; Ferligoj and Batagelj, 1980). Like most hierarchical methods 
it is based on the consecutive merger of two groups into a new group (the other 
hierarchical method work in the opposite direction). By Ward’s algorithm, 
dissimilarity measure between the new group, which was formed by a merger of 
groups Ci and Cj and group Ck, is computed by the following formula: 
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4 We are not stating that this is the only or the best way for treating ordinal data, but this 

technique is widely used when computing correlation for ordinal variables. 
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• Ci, Cj, Ck – groups or cases 

• Ti,j   – the center of the new group ji CC ∪  

• Tk – the center of the group Ck. 
• ni, nj and nk  – the number of cases in groups Ci, Cj and Ck. 

(Ferligoj, 1989). 
However, since we performed our analysis on the basis of dissimilarity 

matrices, this formula can not be used. The appropriate formula is based on the 
Lance Williams recurrence formula and here the dissimilarity between a newly 
joined group and previous groups can be computed solely on the basis of the 
dissimilarity matrix. The Lance Williams recurrence formula for Ward method is: 

),(
)(

),(
)(

)(
),(

)(

)(
),( ji

kji

k
jk

kji

kj
ik

kji

ki
kji CCd

nnn

n
CCd

nnn

nn
CCd

nnn

nn
CCCd

++
−

++
+

+
++

+
=∪

(Everitt et. al., 2001, p. 61 and 63) 
The method is also monotonous according to the Lance Williams formula, 

which means it always logically reveals the structure of the data. 

6 Measure of quality of the results of clustering 
procedures 

We decided to measure the quality of the results derived by different procedures of 
hierarchical clustering (the procedures differ in the method of dissimilarity matrix 
computation) by comparing the results of these procedures to the original group 
membership. These groups were already introduced in section 2 (Simulation of the 
data) and are defined by the multivariate distribution from which they were 
simulated. 

However, the result of clustering procedure is a dendrogram. A tree structure 
shows which cases, groups or clusters were joined in each step of the clustering 
algorithm. To get the result which would be comparable with the original group 
membership we extracted the partition, a part of the dendrogram with the same 
number of clusters or groups as the original number of groups. 

For the measure of similarity of gained partitions with the original groups we 
chose Corrected Rand Index (Hubert, 1977). Rand Index (Rand, 1971) is one of 
most widely used measures for comparing partitions (Hubert in Arabie, 1985). It 
takes values on the interval [0,1], where 1 means total agreement and 0 no 
agreement. It is based on the comparison of pairs of units. 

To calculate the Rand Index, we formed a R×C contingency table. There are 

( )n
2  pairs, each belonging to one of the following types: 

1. Objects in the pair are placed in the same group in both partitions. 
2. Objects in the pair are placed in different groups in both partitions. 
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3. Objects in the pair are placed in different groups in the first partition and 
in the same group in the second partition. 

4. Objects in the pair are placed in the same group in the first partition and in 
different groups in the second partition. 

Pairs of type 1. and 2. can be described as agreements (A) and pairs of type 3. 
and 4. as disagreements (D). A represents the total number of agreements and D 
the total number of disagreements:  

( )nDA 2=+ . 

The Rand Index can be written as: 

2

)1( −= nn

A
Rand . 

However, we used the Corrected Rand Index (CRand) instead. As the name 
indicates, it is in fact the Rand index, corrected for chance. The Corrected Rand 
Index is computed using the following formula: 

)()(

)(

RandERandMax

RandERand
CRand

−
−= . 

This index takes values on the interval [-1,1], where 1 again means total 
agreement and 0 means that agreement between the two partitions is as good as 
can be expected by chance (in cases where the group membership of each unit was 
chosen randomly). 

7 Results 

Up to this point, we have described the simulation of the data, the transformation 
performed on them, computation of the dissimilarity matrices, clustering algorithm 
and, in the previous section, the measure used to assess the quality of results of 
clustering procedure. The values of this measure represent the main results of this 
research.  

For the analysis of the data, analysis of variance (Rice, 1995; Faraway, 2002) 
and graphical representation were used. We first analyzed two-dimensional data 
settings and then compared the findings with three-dimensional design. 

Analysis of variance was used to compare the means of the different settings 
and treatments of the data.  

The main interest is to determine the effect of data treatment (with respect to 
other factors) on the quality of classification. Data designs (designs 1 to 7), 
distances among population means and number of unessential variables can not be 
influenced or even known prior to the data collection and analysis. Since 
determining them is often the aim of the analysis, they are considered only 
separately (as additive factors). 

Our basic model was: 
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CRand = µ + ai + bj + interaction effect (a, b) + ck + dl + em + fn + go + 
interaction effects (d, e, f, g) + ε 
 
where a, b,...,g are factors occurring at levels: 
 

i  = 1,...,3 levels for distance of population means (distMeans) 
j  = 1,...,7 levels for data design – covariance matrices (design) 
k = 1,...,3 levels for number of unessential variables added 
l  = 1,...,3 levels for number of categories (noClass) 
m = 1,...,4 levels for type of cutting (typeCut) 
n = 1,...,4 levels for extension factor (f) 
o = 1,...,3 levels for data treatment (varType) 

 
We assumed that the errors (ε) are independent and identically normally 

distributed with mean 0 and variance σ2.  We used a least squares approach (we 
fitted the linear model) to estimate the effects of factors. We fitted the model on 
only 10 repetitions (due to restrictions in computer memory). 
 

Table 2: Analysis of variance table for the basic model. 

 
 Df Sum of 

Squares 
Mean 

Square 
F 

DistMeans 2 1022.0 511.0 26331.3 
Design 6 95.1 15.9 816.8 
unessential variables 2 186.2 143.1 7375.1 
NoClass 2 23.6 11.8 606.7 
TypeCut 3 74.3 24.4 1258.5 
F 3 58.8 19.6 1009.4 
VarType 2 517.6 258.8 13335.0 
distMeans:design 12 11.8 1.0 50.7 
noClass:typeCut 6 24.4 4.1 209.2 
noClass:f 6 9.1 1.5 78.0 
typeCut:f 9 50.8 5.7 291.0 
noClass:varType 4 36.3 9.1 467.1 
typeCut:varType 6 5.9 1.0 50.7 
f:varType 6 52.7 8.8 453.0 
noClass:typeCut:f 18 15.6 0.9 44.7 
noClass:typeCut:varType 12 4.8 0.4 20.7 
noClass:f:varType 12 12.9 1.1 55.3 
typeCut:f:vartype 18 5.8 0.3 16.7 
noClass:typeCut:f:varType 36 4.5 0.1 6.5 
Residuals 90554 1747.3 0.02  
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Table 2 shows an analysis of variance table for the basic model. Adjusted R2 
for this model was 0.57. It can be seen that the interaction effects are present but 
are smaller than the main effects. The two largest main effects explain about 39% 
of total variation. All other main effects and interactions in the model explain only 
about 17% of variance. 

The largest effects in the model are based on difference of population means 
and data treatment. From the coefficients of the linear model it can be seen that the 
larger the population means’ distance, the lower the quality of classification. The 
overall effect of data treatment suggests that we treat ordinal data as interval or at 
least as ranks. There is also a large effect due to added unessential variables. The 
more unessential variables added, the lower the quality of classification. 

Graphical presentation of results can be seen in Figure 4, with the four graphs 
presenting the results of four types of cutting respectively. 
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Figure 6: The quality of results of different procedures. 

All graphs show the average Corrected Rand Index (on the y axis) for all 50 
repetitions for all two-dimensional data settings. The results are averaged over all 
data designs, sets of distances and number of unessential variables. The results for 
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individual settings are not shown due to the large number of different 
combinations, but they were examined and are referred to where applicable.  

Corrected Rand Index measures the similarity of a partition, which is gained 
after a specific transformation of the data and after a specific procedure for 
clustering the data was used. The parameters of the transformations of the original, 
simulated variables into ordinal variables can be seen in two places. The title of 
the graph denotes the type of cutting used. The other two parameters (extension 
factor and number of categories) that influenced this transformation are indicated 
at the x axis. 

The characters indicate the treatment of the data according to the legend in the 
top right corner of the graph: 
s –  Simulated variables: The original simulated variables (before the 

transformation into ordinal variables) were put through the same procedure – 
dissimilarity matrix computed using Squared Euclidean distance and clustering 
done by Ward’s method. Since the variables in this procedure were not 
subjected to the transformations, different cutting options (or parameters) had 
no effect and therefore the Corrected Rand Index is always the same for them. 
These results are shown only for the comparison, in order to simplify the 
estimation of the effect of the transformation. In principle5, better results could 
not be expected after any transformation, since this procedure retained the 
most data. 

i –  Interval: The results are based on having treated the ordinal data as interval (as 
described in subsection 4.1) 

r –  Ranks: The results are based on having treated the ordinal data as ordinal (as 
described in subsection 4.2), which was done by computing ranks and then 
performing on them the same analysis as on interval data. 

n –  Nominal: The results are based on having treated the ordinal data as nominal 
(as described in subsection 4.3). 

It can be seen from all graphs that all treatments of the data as well as all cutting 
options have an effect on the quality of the result. Furthermore, the treatment of 
the ordinal data as interval and the treatment where we compute ranks on these 
ordinal data yield similar results, which are in all cases better than those gained by 
treating the data as nominal. Since treating the data as nominal is obviously an 
inappropriate approach, we further focused exploration and interpretation of the 
results on the remaining two treatments (as interval and ordinal data). 
 
 
 
 

                                                 
5 It could happen by “chance” if the borders of intervals used in the cutting (or recoding) 

procedure were to line up with the borders of our groups. 
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7.1 Focus on the results of treating data as interval and 
transformation to ranks 

 
Observing these two data treatments from the graphs, we noticed that the quality 
of the results decreases with the increase of the extension factor. When the 
extension factor is small, an increase in the number of categories improves the 
quality of the results. However, when the extension factor increases, these effects 
are more or less diminished. 

Since treating data as nominal yields much poorer results compared to treating 
them as ranks or interval, we decided to eliminate them. We fitted the basic model 
on the new set of data. Adjusted R2 for this data was 0.55. The results can be seen 
in Table 3. 
 

Table 3: Analysis of variance table for the basic model                                                 
(data treatments: interval and rank). 

 
 

Df 
Sum of 
Squares 

Mean 
Square 

F 

distMeans 2 963.2 481.6 22204.2 
design 6 69.1 11.5 531.3 
unessential variables 2 252.4 126.2 5817.6 
noClass 2 48.9 24.4 1126.3 
typeCut 3 44.6 14.9 686.0 
f 3 98.6 32.9 1514.5 
varType 1 6.7 6.7 307.3 
distMeans:design 12 11.8 1.0 45.2 
noClass:typeCut 6 25.8 4.3 198.3 
noClass:f 6 15.5 2.6 119.4 
typeCut:f 9 30.9 3.4 158.6 
noClass:varType 2 0.4 0.2 10.0 
typeCut:varType 3 3.1 1.0 47.3 
f:varType 3 12.31 4.1 189.2 
noClass:typeCut:f 18 16.1 0.9 41.1 
noClass:typeCut:varType 6 1.3 0.2 9.9 
noClass:f:varType 6 4.9 0.8 37.6 
typeCut:f:vartype 18 3.4 0.4 17.5 
noClass:typeCut:f:varType 36 2.2 0.1 5.7 
Residuals 90554 1309.2 0.02  

 
It can again be seen that most of main effects are larger than interaction 

effects. The largest effect in the model is based on difference of population means. 
Data treatment effect is not so strong anymore. It explains about 0.2% of variance 
compared to 13% when nominal data were included. Its interaction with extension 
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factors accounts for more Sum of Squares (variance) than its main effect. All other 
main effects are stronger. Unessential variables (as in the previous model) are the 
second strongest effect. Extension factor and different number of classes then 
follow. The more distorted the groups are, the lesser the quality in classification, 
and the larger the number of classes, the better the quality of the classification. 

For the special three-dimensional data design we fitted a similar anova model 
(excluding distance of population means and data designs, since we had just one): 
 

CRand = µ  + ck + dl + em + fn + go + interaction effects (d, e, f, g) + ε 
 
where c,...,g are factors occurring at levels: 
 

k = 1,...,3 levels for number of unessential variables added 
l  = 1,...,3 levels for number of categories (noClass) 
m = 1,...,4 levels for type of cutting (typeCut) 
n = 1,...,4 levels for extension factor (f) 
o = 1,...,3 levels for data treatment (varType) 

 
The results were very similar to the ones described above. The main difference 

was that the effect of number of unessential variables was much smaller. Possible 
reasons for that could be a larger number of variables describing a group and a 
special design of population means and covariance matrices. This special data 
design could also explain the smaller effect of the number of categories. 

 

7.2 Comparison of the results of treating data as interval and of 
transforming them into ranks 

 
After reviewing these results, the following question arises: “Is it better to treat 
ordinal variables as interval or to transform them into ranks?” Unfortunately, the 
answer is too complicated to be answered in a brief manner. It was observed that 
transforming data ranks produced better results in most scenarios when the 
transformed variables are quite far away from interval scale. By this we mean that 
the extension factor is large or the number of categories is 3 and the type of cutting 
is set to yes-sayers or no-sayers, which is the usual result of asymmetrical scales 
(wider categories at one of the extremes). Of course, this differs from one 
individual setting to another, but as a general rule it can be said that on average the 
result of treating data as ranks compared to treating them as interval improves 
when we move away from the interval scale. 

On the other hand, treating data as interval produces better results in the 
remaining scenarios: when the type of cutting is average or mix and number of 
categories is 5 or 4 or extension factor is not very large (approximately below 1.5). 
These settings are very important, since we can assume that the mix type of cutting 
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is the most realistic assumed type for a general social survey (with well designed 
questions, which do not impose asymmetry). It is likely that the respondents of a 
survey will be a mixture of people with different “answering habits” (yes-sayers, 
no-sayers, average, simple). Furthermore, 5 is one of the most common numbers 
of categories in scales found in social surveys. We also believe that in well-
designed surveys extreme extension factors are quite rare (e.g. extension factor 2 
and no-sayers type of cutting would mean that more than one half of the units has 
the extreme value).  

Finally, we should point out that although we estimated the effects of different 
data treatments on a number of different data designs, there is no guarantee that 
these results hold in general or even more for a specific dataset. Even in our 
datasets the effects of treatments were sometimes quite different, mainly due to 
“chance” cutting.  

8 Conclusion 

In this research we dealt with the following question: “How should we treat 
ordinal data in hierarchical clustering?”. We can state that ordinal data in 
hierarchical clustering should be either treated as interval or converted to ranks, 
not as nominal or converted to a set of binary variables, as long as the original 
ordinary variables have at least 3 categories. Technically our results can be applied 
only to the data designs used in our simulations. However, since we assessed the 
treatment effects on a large variety of different data designs, we believe that our 
results can be used to select an appropriate treatment for most datasets. The results 
for our specific clustering procedures (Ward’s method, Squared Euclidean 
distance) have clearly shown this (large difference in quality of the results); we 
believe that the suggestion is also useful for similar procedures. 

Unfortunately, we can not point to only one of the two treatments suggested in 
the previous paragraph. There are some differences in the quality of the results 
gained by the two treatments, which were described in more detail in subsection 
7.2, but no general conclusion can be reached.  

To sum up, ordinal data in hierarchical clustering should not be treated as 
nominal, no matter how far from interval data they are. However, the question 
whether it is better to treat them as interval or to convert them to ranks remains 
unanswered. 
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