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A Comparison of Different Approaches to
Hierarchical Clustering of Ordinal Data
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Abstract

The paper tries to answer the following questiodoWw should we treat
ordinal data in hierarchical clustering?” The gu@stis strongly connected
to the use of questionnaires with ordinal scaleshim social sciences. The
results could help to differentiate among answersthte questions from
guestionnaires that could be considered as scalablas, those it would be
better to convert to ranks and those that shouldtreated as nominal
variables. To make the results general several dimtensional
combinations of group sizes, shapes and differetetgeen their centers
were used as well as one three-dimensional comibimaEach combination
was simulated both with and without unessentialataes.

All datasets consisted of 3 groups, each with itgn omultivariate
distribution (2 or 3 variables) with known meanglarovariances.

From each design several datasets were simulatezh #ariable was cut
and recoded to achieve an ordinal scale. Differamting schemes were
used (the intervals were of equal size, eithera@asing/decreasing from the
lowest to the highest value or decreasing fromrttean to both extremes).
These new variables were then treated as inteoalyerted to ranks and
treated as nominal. Then hierarchical clusteringodathms were used.
Ward's algorithm with Squared Euclidean distance wsed when data were
considered interval or converted to ranks, and Vsaragorithm with
matching coefficient as dissimilarity measure waedl when they were
considered nominal.

The quality of the results was assessed by comgathe gained
partitions with the three original groups. We alsompared results from
clustering the original (uncut) data with the threeiginal groups for
comparison. The comparison was made using CorreR@ud Index. The
results indicate that in most cases treating th@ da interval or converting
them to ranks yields better results than treatimgnt as nominal, but the
differences are sometimes diminished when cuttivig & smaller number of
intervals.

! University of Ljubljana, Slovenia
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1 Introduction

The paper tries to answer the following questioHoWw should we treat ordinal
data in hierarchical clustering?” Measurements he social sciences are often
done with an ordinal scale, usually using questiom@sawith categorical scales of
3 to 9 categories. The results of these measuresmamet ordinal data. However,
many statistical methods are not suitable to hattdkekind of data.

One of them is hierarchical clustering. The problMhen dealing with ordinal
data in hierarchical clustering lies in how to cartg the dissimilarity matrix
(distances among units). Dissimilarity matrix is thgut of several different
clustering algorithms. We used Ward’s algorithm ¢d/al1963), one of the most
commonly used clustering algorithms. The differerdgedures we used thus differ
only in the way the dissimilarity matrix is computedhich mainly depends on the
assumptions about the nature of the data (inteosdinal, nominal).

The purpose of this paper is to determine whichtha& different procedures
used outperforms the others and under which cirtant®s. To achieve this, all
procedures were tested on a number of two-dimemsiotata designs (a
combination of group covariance matrices and siakshree groups), distances
among population means and number of unessentiabilas.

50 repetitions of each data design combination ¢Wwhvas cut with respect to
different parameters to produce ordinal data) weeale in order to obtain more
reliable results.

The simulation was also done on a specific threeedisional data design. In a
similar manner to the two-dimensional designs weutated three groups, each
from a different three-dimensional normal distriiout

2 Simulation of the data

In order to test different clustering procedures, fivst had to simulate the data on
which we could apply these procedures. As mentiones started by simulating
three groups, each simulated from a different twotlhoee-dimensional normal
distribution. These groups were simulated 50 timdbat is, the whole process of
simulation, clustering and assessment was repégidtnes for each setting (data
design combination). The three different distaneesong population means for
data design 1 are presented in Figure 1. The shmee tsets of distances among
population means were used in combination withwad-dimensional data designs.
The remaining two-dimensional data designs (2 t@rgé) shown in Figure 2. Only
the first set of distances among population meanshown. The black dots in the
graphs represent an example of an actual simulatidhe data setting, while gray
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dots represent a result of a simulation where thmlrer of cases in each group
was multiplied by 100. All of these combinations wesimulated with zero, one
and two unessential variables.

designl designl designl
distMeans 1 distMeans 2 distMeans 3
< - _ L -
] .. ‘.O. L ] - © > l-..
~ 4 t’“ R ~ - (% K < * ..d'...:".
‘e ‘.' . " .
X} . ¢ "‘.. w' 5 S 5",
. L . ~ LRY BN Y
e Yokl o l\‘.. o+ £ oW 0 Flvee o,
o R, o 3‘\' g '. o ae ‘c-"&i.o
h * (S o ¥ o «* e e X
. . ‘ ~ ..
< . o
b < *
T T T T T ! T T T T T T T T T T
4 2 0 2 4 4 2 0 2 4 4 2 0 2 4

Figure 1: Data design 1 with different sets of distances agnpopulation means.
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Figure 2: Data designs 2 to 7 with distances between pojmnaheans 1.

The design and distances among group means fahtee-dimensional case is
shown in Table 1. In Figure 3 we can see an examptbe simulated datane of
the 50 cases. As can be seen, the groups diffdreim centers or mean vectors, in
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their covariance matrices and in size (number ofsynThey also slightly overlap.
These groups were simulated with unessential visab zero, one and thrée.

Table 1: Design for the simulated groups.

U (vector of > (population covariancg Number of
Group number : . :
population means) matrix) units
625 9 0
1 (-5,1,2) 9 2025 0 50
0 0O 4
16 -17 -504
2 (8,2.1,-2) =17 25 525 30

-504 525 441

9 -108 18
3 (1,-20,12) -108 144 -57p 20
18 -576 36

Figure 3: An example of the three-dimensional simulated d&tee numbers indicate
group membership.

2 Here the largest number of unessential variabte$.i It equals the number of essential
variables in the dataset.
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3 Cutting the interval data into categories (ordinal
data)

Though we described the process of simulating watledata, the purpose of this
paper is to test several procedures of hierarchihiedtering on ordinal data. With
this in mind, we transformed interval data intoioal data by cutting the variables
into categories in several different ways. In thieqess we varied the following
parameters:

* Number of categories (noClass)

* Type of cutting (typeCut)
» Extension factor (f)

Let us first describe these parameters.

3.1 Number of categories

The first parameter provides the number of categointo which values of the

original variables were recoded. The values ofdhginal variables were cut into

intervals (their number matches the number of aatieg). All values in the same
interval were then recoded into the same value,atarthe sequential number of
the interval (e.g. values within the interval witihe lowest values were recoded
into 1). In our simulation, we recoded the interwariable into 3, 4 and 5

categories. In all cases, values of both or ale¢hinterval variables used were
recoded into the same number of categories, theegabf each variable entered
separately. Cutoff points differed from variable variable, but the parameters
were the same.

3.2 Typeof cutting

This parameter shows how the direction in which thielths of the interval
increase was determined. We used the following tygesutting:

* no-sayers The values of the original interval variables ang in a way
such that the first interval is the widest and eacibsequent interval is
narrower — this corresponds to asymmetrically fornoadegories (more
categories at the end of the scale) or the anseksubjects who tend to
disagree.

* yes-sayersOpposite to the first type (the first intervaltlee narrowest and
each subsequent interval is wider) — this corredpoto asymmetrically
formed categories (more categories at the beginwihghe scale) or the
answers of subjects who tend to agree.
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* average The widest interval is at the center and intesvaarrow in both
directions from the center — this corresponds toscale with wide
categories at the center (more categories at tlreraes of the scale) or the
answers of subjects who tend to try to blend in.

» simple All intervals are of equal width — this correspiento symmetrically
formed categories or subjects who answer “correctly”

* mix We randomly chose one of the types of cutting abfmreeach unit
based on the probabilities that we assuintedrepresent the portion of
subjects from a population that would answer inhsacway — this would
correspond to a real sample from a population ansgeguestions with
symmetrically formed categories. We assumed the fiofig probabilities:

* P(yes-sayers= P(o-sayer}=0.14

« P(average = 0.29
* P(simplg = 0.43.

The effects of type of cutting on the borders of iervals are seen in Figure
4. The figure presents the case with extensionofa2tand 5 categories. There are
four different lines split into intervals. The valabove each interval is that which
would be assigned to all cases within that interfeal the variable recoded at a
given time. The type of cutting is also indicated.

Type of cutting ='simple’
1 . 2 3 4 5

Type of cutting = 'yes-sayers'
12 3 4 5

Type of cutting = 'no-sayers'

1 2 3 45
f f f —

Type of cutting = 'average'
1 2 3 4 5

Figure 4: The effect of the type of cutting.

% The assumed probabilities were based on the mesfilthe research “Drobno gospodarstvo v
Sloveniji” by Professor Dr. Janez PraSnikar of Umsity of Ljubljana (Faculty of Economics)
and review of the “Slovensko javno mnenje” (ToSAlt, 1999).
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3.3 Extension factor

This parameter determines how much wider each suesg interval is than the
previous one, looking in the direction defined b tiype of cuttingf is actually
the parameter of the geometric sequence (e.geifsthrting interval is of width,
then the next is of width*f). If f = 1, then all intervals are of equal width
irrespective of type of cutting.

Extension factor= 1

1 2 3 4 5
f f f f f 1

Extension factor = 1.25
1 2 3 4 5

Extension factor= 1.5

1 2 3 4 5
— f f f 1

Extension factor = 2
12 3 4 5

Figure 5: The effect of the extension factor.

The effects of the extension factor on the intetvalders are seen in Figure 5.
In the figure the case with type of cuttiggs-sayerand 5 categories is presented.
Again there are four different lines split into envals. Above each interval we can
see the value that would be assigned to all casélsirwthat interval for the
variable recoded at a given time. The extensiortofacs indicated above the
values.

4 Computation of the dissimilarity matrices

The usual input of the hierarchical clustering aitfom is the dissimilarity matrix.
In this paper we treated data in three differenysvéas interval, as ordinal and as
nominal), although we know they are ordinal. Theséfercknt treatments
influenced the procedures for computing dissimilamatrices. Actually this is the
only part of the computations that differs from pedare to procedure.
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4.1 Interval data

When treating data (ordinal variables, which wehe tresult of the recoding
described in the previous section) as interval,used these transformed (recoded)
data and computed the dissimilarity matrix by Squdtadlidean distance:

d(X,Y) =2(x - y)?, whereX andY represent two different units ang andy;
their values at thé"ivariable.

4.2 Ordinal data

When treating data as ordifalwe first computed ranks for values of each
(transformed) variable respectively and then comgube dissimilarity matrix on
these ranks by Squared Euclidean distance (as hefore

d(X,Y) =2(x - y)?, whereX andY represent two different units ang andy;
their values at thé"ivariable.

4.3 Nominal data

When treating data as nominal, our dissimilarity mea was simply the number
of variables with different values, a matching daaént:

Lx =Y,
diX,Y)=)> o.; o =
o) Z | {0, X 7Y,
X andY again represent two different units andandy; their values at the",
variable.

5 Hierarchical clustering procedure

The dissimilarity matrices were used as an inputtie Ward hierarchical
clustering algorithm (Ward, 1963). Numerous emgicomparisons have shown
that Ward’s method is the most suitable method dpherical data (e.g. Everitt,
1974; Mojena, 1978; Ferligoj and Batagelj, 1980keLmost hierarchical methods
it is based on the consecutive merger of two gromps a new group (the other
hierarchical method work in the opposite directioBy Ward’'s algorithm,
dissimilarity measure between the new group, whaas formed by a merger of
groupsC; andC; and groupCy, is computed by the following formula:

(n +nj)nk

d(C oOC,C)=———
( i j k) (ni +nj +nk)

d*(T;. T,

4 We are not stating that this is the only or thestbway for treating ordinal data, but this
technique is widely used when computing correlafi@nordinal variables.
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* Ci, G, Cc—groups or cases
« T;; —the center of the new grop [ CJ.

* Ty — the center of the grougx.

* n;, nyandng —the number of cases in groups C; andCy.
(Ferligoj, 1989).

However, since we performed our analysis on theisbag dissimilarity
matrices, this formula can not be used. The appatprformula is based on the
Lance Williams recurrence formula and here the idigarity between a newly
joined group and previous groups can be computddlys@n the basis of the
dissimilarity matrix. The Lance Williams recurrenmgmula for Ward method is:
Md(ck,ci).;.m
(n +n; +n) (N, +n; +n,)
(Everitt et. al., 2001, p. 61 and 63)

The method is also monotonous according to the éawtlliams formula,
which means it always logically reveals the struetaf the data.

i d(C,.C,) ~——*—d(C,,C,)

(G HE.Co= _(ni +n; +n,)

6 Measure of quality of the results of clustering
procedures

We decided to measure the quality of the resultevdd by different procedures of
hierarchical clustering (the procedures differ lne tmethod of dissimilarity matrix
computation) by comparing the results of these @doces to the original group
membership. These groups were already introducesg¢gtion 2 (Simulation of the
data) and are defined by the multivariate distridbutfrom which they were
simulated.

However, the result of clustering procedure is adtegram. A tree structure
shows which cases, groups or clusters were joimedaich step of the clustering
algorithm. To get the result which would be compeawith the original group
membership we extracted the partition, a part & dendrogram with the same
number of clusters or groups as the original nundiegroups.

For the measure of similarity of gained partitiomgh the original groups we
chose Corrected Rand Index (Hubert, 1977). Ran@xXn@and, 1971) is one of
most widely used measures for comparing partitihgbert in Arabie, 1985). It
takes values on the interval [0,1], where 1 meamtsltagreement and 0 no
agreement. It is based on the comparison of pditsits.

To calculate the Rand Index, we formed a RxC canty table. There are
(’2‘) pairs, each belonging to one of the following type

1. Objects in the pair are placed in the same gioumwth partitions.
2. Objects in the pair are placed in different gre@un both partitions.
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3. Objects in the pair are placed in different gr@un the first partition and

in the same group in the second partition.

4. Objects in the pair are placed in the same gioupe first partition and in

different groups in the second partition.

Pairs of type 1. and 2. can be described as agmesni® and pairs of type 3.
and 4. as disagreement®)( A represents the total number of agreements@nd
the total number of disagreements:

A+D =(2).

The Rand Index can be written as:

A
Rand=@ :
2
However, we used the Corrected Rand Index (CRansljead. As the name
indicates, it is in fact the Rand index, corrected chance. The Corrected Rand
Index is computed using the following formula:
CRand= Rand- E(Rang .
Max(Rand) — E(Rand)
This index takes values on the interval [-1,1], whél again means total
agreement and 0 means that agreement between theadrwtitions is as good as
can be expected by chance (in cases where the gneagbership of each unit was

chosen randomly).

7 Results

Up to this point, we have described the simulatdrthe data, the transformation
performed on them, computation of the dissimilantgtrices, clustering algorithm
and, in the previous section, the measure usedssess the quality of results of
clustering procedure. The values of this measupeesent the main results of this
research.

For the analysis of the data, analysis of variafRiee, 1995; Faraway, 2002)
and graphical representation were used. We firstlyaed two-dimensional data
settings and then compared the findings with thdigeensional design.

Analysis of variance was used to compare the med#rike different settings
and treatments of the data.

The main interest is to determine the effect ofad@eatment (with respect to
other factors) on the quality of classification. tBadesigns (designs 1 to 7),
distances among population means and number ofsenéal variables can not be
influenced or even known prior to the data collentiand analysis. Since
determining them is often the aim of the analydisey are considered only
separately (as additive factors).

Our basic model was:
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CRand =yx + a; + b; + interaction effect (a, b) +ic+ d + em + fy + go +
interaction effects (d, e, f, g) &

wherea, b,...,g are factors occurring at levels:

= 1,...,3 levels for distance of population meg&fhistMeans)
1,...,7 levels for data design — covariance oa$ (design)
1,...,3 levels for number of unessential variakdeded
1,...,3 levels for number of categories (noCjass

1,...,4 levels for type of cutting (typeCut)

1,...,4 levels for extension factor (f)

1,...,3 levels for data treatment (varType)

— - -
o

m=
n
0=

We assumed that the errors) (are independent and identically normally
distributed with mean 0 and varianc. We used a least squares approach (we
fitted the linear model) to estimate the effectsfadtors. We fitted the model on
only 10 repetitions (due to restrictions in computeemory).

Table 2: Analysis of variance table for the basic model.

Df Sum of Mean F
Squares Square

DistMeans 2 1022.0 511.0 26331.]
Design 6 95.1 15.9 816.8
unessential variables 2 186.2 143.1 7375.
NoClass 2 23.6 11.8 606.7
TypeCut 3 74.3 24.4 1258.5
F 3 58.8 19.6 1009.4
VarType 2 517.6 258.8 13335.0
distMeans:design 12 11.8 1.0 50.7
noClass:typeCut 6 24.4 4.1 209.2
noClass:f 6 9.1 1.5 78.0
typeCut:f 9 50.8 5.7 291.0
noClass:varType 4 36.3 9.1 467.1
typeCut:varType 6 5.9 1.0 50.7
f:varType 6 52.7 8.8 453.0
noClass:typeCut:f 18 15.6 0.9 44.7
noClass:typeCut:varType 12 4.8 0.4 20.7
noClass:f:varType 12 12.9 1.1 55.3
typeCut:f:vartype 18 5.8 0.3 16.7
noClass:typeCut:f:varType 36 4.5 0.1 6.5
Residuals 90554 1747.3 0.02
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Table 2 shows an analysis of variance table forkthsic model. Adjusted R
for this model was 0.57. It can be seen that theraction effects are present but
are smaller than the main effects. The two largesin effects explain about 39%
of total variation. All other main effects and indetions in the model explain only
about 17% of variance.

The largest effects in the model are based on rdiffee of population means
and data treatment. From the coefficients of thedr model it can be seen that the
larger the population means’ distance, the lower dality of classification. The
overall effect of data treatment suggests that mattordinal data as interval or at
least as ranks. There is also a large effect duedtied unessential variables. The
more unessential variables added, the lower thétgud classification.

Graphical presentation of results can be seenguréi 4, with the four graphs
presenting the results of four types of cuttingoedively.
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Figure 6: The quality of results of different procedures.

All graphs show the average Corrected Rand Indextfe y axis) for all 50
repetitions for all two-dimensional data settingfe results are averaged over all
data designs, sets of distances and number of eneakvariables. The results for
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individual settings are not shown due to the largember of different
combinations, but they were examined and are refeto where applicable.
Corrected Rand Index measures the similarity ofagipon, which isgained
after a specific transformation of the data anderafa specific procedure for
clustering the data was used. The parameters afémsformations of the original,
simulated variables into ordinal variables can bersin two places. The title of
the graph denotes the type of cutting used. Therotwo parameters (extension
factor and number of categories) that influenced thansformation are indicated
at the x axis.

The characters indicate the treatment of the detaraing to the legend in the
top right corner of the graph:

s — Simulated variables: The original simulated rialsles (before the
transformation into ordinal variables) were putoingh the same procedure —
dissimilarity matrix computed using Squared Euclidalistance and clustering
done by Ward’'s method. Since the variables in thrscedure were not
subjected to the transformations, different cuttapgions (or parameters) had
no effect and therefore the Corrected Rand Indeadvsys the same for them.
These results are shown only for the comparisonpriager to simplify the
estimation of the effect of the transformation phinciple’, better results could
not be expected after any transformation, since firocedure retained the
most data.

i — Interval: The results are based on havingte@ahe ordinal data as interval (as
described in subsection 4.1)

r — Ranks: The results are based on having tredtecdrdinal data as ordinal (as
described in subsection 4.2), which was done bypmdmg ranks and then
performing on them the same analysis as on intetatd.

n — Nominal: The results are based on having ¢ckdlhe ordinal data as nominal
(as described in subsection 4.3).

It can be seen from all graphs that all treatmeitthe data as well as all cutting
options have an effect on the quality of the resklirthermore, the treatment of
the ordinal data as interval and the treatment ehee compute ranks on these
ordinal data yield similar results, which are ih @ses better than those gained by
treating the data as nominal. Since treating thi& & nominal is obviously an
inappropriate approach, we further focused exploraand interpretation of the
results on the remaining two treatments (as inteawa ordinal data).

® It could happen by “chance” if the borders of nvi@s used in the cutting (or recoding)
procedure were to line up with the borders of otougps.
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7.1 Focus on the results of treating data as interval and
transfor mation to ranks

Observing these two data treatments from the graplesnoticed that the quality

of the results decreases with the increase of thiension factor. When the

extension factor is small, an increase in the nunidfecategories improves the

quality of the results. However, when the extendiactor increases, these effects
are more or less diminished.

Since treating data as nominal yields much poogsults compared to treating
them as ranks or interval, we decided to elimirtatam. We fitted the basic model
on the new set of data. Adjusted fr this data was 0.55. The results can be seen
in Table 3.

Table 3: Analysis of variance table for the basic model
(data treatments: interval and rank).

Df Sum of Mean =
Squares Square

distMeans 2 963.2 481.6 22204.2
design 6 69.1 11.5 531.3
unessential variables 2 252.4 126.2 58176
noClass 2 48.9 24.4 1126.3
typeCut 3 44.6 14.9 686.0
f 3 98.6 32.9 1514.5
varType 1 6.7 6.7 307.3
distMeans:design 12 11.8 1.0 45.2
noClass:typeCut 6 25.8 4.3 198.3
noClass:f 6 15.5 2.6 119.4
typeCut:f 9 30.9 3.4 158.6
noClass:varType 2 0.4 0.2 10.0
typeCut:varType 3 3.1 1.0 47.3
f:varType 3 12.31 4.1 189.2
noClass:typeCut:f 18 16.1 0.9 41.1
noClass:typeCut:varType 6 1.3 0.2 9.9
noClass:f:varType 6 4.9 0.8 37.6
typeCut:f:vartype 18 3.4 0.4 17.5
noClass:typeCut:f:varType 36 2.2 0.1 5.7
Residuals 90554 1309.2 0.02

It can again be seen that most of main effects larger than interaction
effects. The largest effect in the model is basedliéference of population means.
Data treatment effect is not so strong anymorexfilains about 0.2% of variance
compared to 13% when nominal data were includediniteraction with extension
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factors accounts for more Sum of Squares (variatica) its main effect. All other
main effects are stronger. Unessential variablssirfahe previous model) are the
second strongest effect. Extension factor and diffe number of classes then
follow. The more distorted the groups are, the édesbe quality in classification,
and the larger the number of classes, the beteeqtiality of the classification.

For the special three-dimensional data design wedia similar anova model
(excluding distance of population means and datagwe, since we had just one):

CRand =y + cc+ d + ey + fy + go + interaction effects (d, e, f, g) &
wherec,...,g are factors occurring at levels:

k=1,...,3 levels for number of unessential varsbhddded
| =1,...,3 levels for number of categories (noC)Jass

= 1,...,4 levels for type of cutting (typeCut)

..,4 levels for extension factor (f)

..,3 levels for data treatment (varType)

m
n=1,.
o=1,.

The results were very similar to the ones descridlealve. The main difference
was that the effect of number of unessential vdeislivas much smaller. Possible
reasons for that could be a larger number of véemllescribing a group and a
special design of population means and covarianeg¢rices. This special data
design could also explain the smaller effect of thenber of categories.

7.2 Comparison of the results of treating data as interval and of
transfor ming them into ranks

After reviewing these results, the following questiarises: “Is it better to treat
ordinal variables as interval or to transform therto ranks?” Unfortunately, the
answer is too complicated to be answered in a bnehner. It was observed that
transforming data ranks produced better resultsmiost scenarios when the
transformed variables are quite far away from iva¢iscale. By this we mean that
the extension factor is large or the number of gatees is 3 and the type of cutting
IS set toyes-sayersor no-sayers which is the usual result of asymmetrical scales
(wider categories at one of the extremes). Of ceurhis differs from one
individual setting to another, but as a genera¢ itiican be said that on average the
result of treating data as ranks compared to tngathem as interval improves
when we move away from the interval scale.

On the other hand, treating data as interval predubetter results in the
remaining scenarios: when the type of cuttingai®rageor mix and number of
categories is 5 or 4 or extension factor is noyarge (approximately below 1.5).
These settings are very important, since we canmsghat themix type of cutting
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is the most realistic assumed type for a generalassurvey (with well designed
guestions, which do not impose asymmetry). It kzly that the respondents of a
survey will be a mixture of people with differenarfswering habits”yes-sayers
no-sayers average simplg. Furthermore, 5 is one of the most common numbers
of categories in scales found in social surveys. &¥& believe that in well-
designed surveys extreme extension factors are gare (e.g. extension factor 2
and no-sayergsype of cutting would mean that more than one lo&lthe units has
the extreme value).

Finally, we should point out that although we estied the effects of different
data treatments on a number of different data dessithere is no guarantee that
these results hold in general or even more for ecidig dataset. Even in our
datasets the effects of treatments were sometimés gifferent, mainly due to
“chance” cutting.

8 Conclusion

In this research we dealt with the following questi “How should we treat
ordinal data in hierarchical clustering?”. We catats that ordinal data in
hierarchical clustering should be either treatedrasrval or converted to ranks,
not as nominal or converted to a set of binary alales, as long as the original
ordinary variables have at least 3 categories. fieahly our results can be applied
only to the data designs used in our simulationsweler, since we assessed the
treatment effects on a large variety of differeataddesigns, we believe that our
results can be used to select an appropriate texdtfior most datasets. The results
for our specific clustering procedures (Ward's noeth Squared Euclidean
distance) have clearly shown this (large differemteguality of the results); we
believe that the suggestion is also useful for Eimprocedures.

Unfortunately, we can not point to only one of tia® treatments suggested in
the previous paragraph. There are some differeircebe quality of the results
gained by the two treatments, which were descriimethore detail in subsection
7.2, but no general conclusion can be reached.

To sum up, ordinal data in hierarchical clustersigould not be treated as
nominal, no matter how far from interval data thaye. However, the question
whether it is better to treat them as interval @rconvert them to ranks remains
unanswered.
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