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Abstract

The method of Buckley and James (1979) for fitting linear regression
models to censored data has been shown to have good statistical properties
under usual regularity conditions. Nevertheless, even after 20 years of its
existence, it is almost never used in practice. We believe that this is mainly
due to lack of software and we state three reasons for using the method. We
argue against some findings by Heller and Simonoff (1992) and in
remainder of the paper briefly explore the method’s behaviour under model
misspecification. We conclude that at present there are no good procedures
for checking the model’s assumption of homoscedasticity under censoring
and therefore do not recommend using this method with censoring higher
than 20%.

1 Introduction

The field of Survival analysis is dominated by the Cox proportional hazards model
(Cox, 1972). While there are many good reasons for this, at least part of the
domination is due to the fact that modelling via the Cox model is easily accessible
to practitioners since almost every statistical package has the procedure
implemented. Still, other methods exist, and it can be argued that they could often
be used (Aalen, 1989). For example, there is probably little doubt that the Cox
model would rarely be used if there were no censored data and that linear
regression would then prevail.

In this paper we focus our attention to the method of Buckley and James
(1979), which is the usual least squares regression adapted for censored data. The
method has been shown to be consistent under usual regularity conditions and
superior to other least squares approaches to censored data (Miller and Halpern,
1982; Heller and Simonoff, 1990). Heller and Simonoff (1992) also compared the
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method to the Cox model. In Section 3 we critically review this comparison and
argue that the guidelines given by Heller and Simonoff can not be used.

The rest of the paper deals with the problem of model assumptions, certainly
the most critical point in using the method. Surprisingly, there has been little work
in this area, although a sensible usage of the model crucially depends on the
assumptions of linearity and homoscedasticity. We conclude that the method of
Buckley and James can safely be used only when the amount of censoring is small.

2 The method of Buckley and James

The model assumes that time T, or some monotone transformation of it, is linearly
related to the covariate vector x, say

Ti i i= + ′ +β β ε0 x          (1)

where εi  are iid with ( ) ( )E i iε ε δ= =0 2,  Var  and the distribution of εi  is

independent of x. Since under censoring we only observe ( )Y T Ci i i= min , , where

Ci  are censoring times, and equation (1) does not hold for Yi , the usual least

squares regression approach is not applicable. Buckley and James define

( )( )Y Y E T T Yi i i i i i i
* = + > −δ δ1 ,

where ( )δi i iI T C= ≤ , the censoring indicator. Considering the above equation for

δi = 1 and δi = 0 , one easily verifies that ( ) ( )E Y E Ti i
* = . The idea then is to replace

Yi  for censored observations with Yi
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where F is the distribution function of ε . After substituting for F its Kaplan-Meier

(1958) estimate $F (one minus the usual Kaplan-Meier survival function estimate),
we have
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where w j  are steps of $F .

If we could observe yi
* , a reasonable estimate would be 

Replacing yi
*  by their estimates and taking into account that estimates depend on

β, we need iterations. Finally we have β β0 = − ′y* x .

The reader is advised to convince himself that the method ensures that no censored
observation is shortened in the process.

3 Why use the Buckley and James method?

Given that Cox model is currently the method of choice for survival data, maybe
the question is ‘Why not use the Cox model?’. We give here three reasons:

1. The basic assumption of Cox model, proportionality of hazards, is not
always met. This fact is often overlooked, again probably because there are
sometimes no alternatives (software!).

2. Published results of fits with Cox model do not allow their usage for
prediction purposes. To be able to predict one needs to estimate the baseline
hazard which can only be done if one has data available. This is not the case
with linear regression where only coefficients are needed for prediction.

3. Results of Cox model fit are difficult to explain to non-statisticians and give
less information than results of linear fits.

Once we decided not to use the Cox model, there are still many options which
might be considered. We consider the Buckley and James method in this paper
because it has been shown to be superior to other semiparametric least squares
approaches (Heller and Simonoff, 1990) and better than parametric versions of (1)
if distribution of εi  is misspecified.

Heller and Simonoff (1992) compared the predictive ability of the Buckley and
James method to the Cox model and gave a decision table for choice between the
two models, based on censoring proportion and a certain R2 calculated for the Cox
model. Their simulations also involved different censoring failure time
distributions, but these were found not to be very important in judging the
predictive ability of Buckley and James method. After a reader’s reaction
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(Feingold, 1993) the table was corrected to give even more credit to the Buckley
and James method. We reproduce the corrected version in Table 1. In our opinion
such a table is misleading and since we feel that there is some potential danger in
such a table actually being used by practitioners to decide which model to use, we
give here some warnings concerning Heller and Simonoff’s comparison.

Table 1: A ‘decision’ table of Heller and Simonoff. B&J stands for the Buckley and
James method.

 Censoring
proportion

Strength of
Regression Model choice

< 40% All B&W

40% - 60% .00 - .25
.25 - .65

.65 - 1.00

B&J
Cox
B&J

> 60% All Cox

correction
> 60%

.00 - .55
.55 - 1.00

Cox
B&J

First, it is conceptually wrong to base a decision on any results obtained after
fitting the Cox model. Usage of an R2 measure would make sense only if it could
be calculated on both models and the values compared. If we are deciding between
Buckley and James and Cox, we can rarely expect both to be correct, so that some
measure calculated on one of them should have no influence on the other.

The results of Heller and Simonoff should be understood in the following way:
if both models are correct, than in most situations predictions based on Buckley
and James method are better than predictions with Cox model. This is not
surprising. If Buckley and James method is consistent and unbiased and the
underlying model is truely linear, then there is no reason why any other method
would predict better. Given that predictions with Cox model in Heller and
Simonoff ‘s paper were based on medians and the criterion used was relative
squared error, it is in fact surprising that the Cox model performed better in any
situation at all. It is even more surprising that the Cox model was favoured more
often with high censoring, when medians sometimes, depending on the strength of
effect, can not be estimated (the authors used the highest observed value in such
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situation4). It should also be noted that two thirds of Heller  and Simonoff’s
simulations were based on non-proportional hazard models (log-normal and
gamma errors), which further favoured Buckley and James.

Table 2: Illustration of bias when fitting a linear model to nonlinear data. See text for
details. B&J stands for Buckley and James method.

Proportion
censored

B&J Fit to
noncensored data Bias

10% 4.98 5.06 0.08

30% 3.94 5.07 1.13

50% 2.88 5.05 2.17

70% 2.06 5.03 2.97

4 When should one use the Buckley and James
method?

The main requirement for usage of any statistical model is that it’s assumptions are
met. From derivations in Section 2 it follows that two requirements must be met if
one wants to use the Buckley and James method:

1. the model must be linear (in the parameters),
2. the distribution of residuals must not depend on the values of covariates

(homoscedasticity).

Checking these assumptions under censoring is difficult, if at all possible. We
report here on some results of our simulations. We first illustrate the effect of not
meeting the above assumptions, and then we discuss the problems encountered in
checking the assumptions.

Table 2 gives results of model fitting when data were generated as Y X= +2 ε ,
X  was uniform on ( , )0 5  and ε  followed extreme value distribution with shape

parameter 2. A misspecified model in the form y xi i i= + +β β ε0 1  was fitted to data

sets with 100 subjects and different censoring proportions. Listed coefficients are
averages of 100 runs for each censoring proportion. For comparison, coefficients
of fits to noncensored data are given.
                                                

4 Personal communication.



130 Janez Stare, Harald Heinzl, and Frank Harrell

It is evident that bias increases with censoring, almost linearly. While this is
only one example of violating the linearity assumption, it shows quite clearly that
we can expect biased results with Buckley and James method, if this assumption is
not met.

To study effects of heteroscedasticity we again used a simple linear model with
X uniform on (1,5) and normally distributed error. The standard deviation of the
error distribution was proportional to values of X. For example, degree 5 of
heteroscedasticity means that standard deviation of the error distribution increased
5 times (from σ to 5σ) when X increased from 1 to 5. Of course, if the increase in
variability had been observed on a larger interval of X, heteroscedasticity and bias
would have been smaller.

Our simulations show that bias increases with:
− degree of heteroscedasticity,
− censoring proportion,
− error variability (σ),
− effect size ( β ).

Figure 1: Bias for 20 (symbol ο), 30 (symbol •) and 50% censoring with β = 1.
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Figure 2: Non-censored heteroscedastic data.

Figure 3: Data of Figure 2 after 50% censoring. Symbol ο denotes censored
observations.
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Figure 4: Buckley and James fit to data in Figure 3 (dashed line). The solid line shows
the unbiased fit.

The first two features are illustrated in Figure 1. Results shown are σ=1 at X=1
and β =1. Effect size does not play an important role, in our simulations bias was

no different for betas from 0.2 to 2. This means (see Figure 1) that for β  = 0.2 and

high heteroscedasticity for example, one can get an estimate of β  that is negative

even with censoring proportion of 20%.
While probably obvious, we nevertheless stress here the following fact: if the

model is misspecified, the Buckley and James method will not reproduce the
underlying best fit, as the method of least squares does when there is no censoring.

Given that violation of assumptions gives biased results, the question is how
we can check the model fit. Surprisingly, almost nothing has been done in this
direction, one exception being the paper by Hillis (1995).

In Figures 2−4 we illustrate the difficulties encountered in checking the
heteroscedasticity assumption. Figure 2 shows uncensored data obtained under the
model described above, with degree of heteroscedasticity equal to 5. In Figure 3
the same data are presented under 50% censoring. It is obvious that despite high
heteroscedasticity of the underlying model, nothing can be discerned from such a
graph. Figure 4 illustrates the bias. The same problem arises with checking the
linearity assumption. Hillis proposed to change the censored residuals by randomly
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changing their values, but this change occurs under the assumptions of correctly
specified model, and therefore doesn’t really help.

Figure 5: Splines fit to highly curved and censored data.

In our experience usage of splines was very useful in dealing with non-
linearity, and one example is given in Figure 5. At this point, we can not report on
any positive finding regarding homoscedasticity check. Adjustments of methods
known from ordinary linear regression all fail and we can only suggest that
Buckley and James method can safely be used with low proportions of censoring
when such an assumption can still be checked using the usual graphical methods.

5 Conclusions

We have shown that the Buckley and James’ least squares regression method is
biased under misspecified model, so that its sensible usage depends crucially on
the assumptions. While linearity assumption can be satisfactorily dealt with using
splines, there is at present no method for checking the homoscedasticity
assumption. Given that heteroscedasticity may introduce considerable bias, one
should take great care in using the method with higher censoring proportions. In
extreme cases, even 20% censoring could be dangerous.
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With survival data heteroscedasticity will of course be common. On the other
hand, logarithm of time will usually be modeled, which may already solve the
problem. Probably, one will have to rely to some extent on experience.

6 Software

We wrote a S-plus program called bj, which has been included in Frank Harrell’s
library Design, available at http://hesweb1.med.virginia.edu/biostat/s/win/.
Besides the fit, the program will allow easy usage of splines, produce renovated
scatterplots as suggested by Smith and Zhang (1995), and plot Hillis’ residuals
besides the ordinary residuals.
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