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A Class of Indices of Equality of a Sport
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Abstract

This paper deals with the measure of equality of a sport championship,
where each participant plays against all the others with a home and away
match. We define a class of indices derived by normalising some measures
of dispersion. Four of such indices are considered and studied: EQ1 (based
on the standard deviation), EQ2 (Gini’s concentration ratio), EQ3 (mean
absolute deviation) and EQ4 (mean letter spread). We refer to two extreme
schemes: the perfect balance and the completely unbalanced position. The
distribution of such indices in 30 European national soccer leagues is
studied, jointly with the correlation between the indices. Then, a simulation
is made, under the hypothesis that the participants have the same level of
skill, and some statistical features of the sample distribution are pointed
out. Finally, a Beta model is fitted to the sample distribution, and it seems
to be an adequate representative.

1 Introduction

Sport games are an inexhaustible source of data, and in the recent years have
been increasingly accompanied by a thorough statistical support. The peculiar
rules of each sport competition have generated a great deal of papers and articles
on this subject. In these works, a lot of statistical and probabilistic tools have been
applied, such as discrete and continuous distributions, stochastic processes,
logistic regression, graphical models, and so on. We can mention, for instance, the
following contributions, related to some popular sports:
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• General: Mosteller (1952), David (1959), Glenn (1960), Jackson (1994).
• Athletic: Blest (1996), Morton (1997), Grubb (1998), Cox and Dunn (2002).
• Baseball: Boronico (1999).
• Basketball: Carlin (1996), Schwertmann et al. (1996).
• Cricket: Kimber (1993), Preston and Thomas (2000, 2002).
• Football/Soccer: Maher (1982), Croucher (1984, 1994), Pollard (1986), Nevill

et al. (1996), Dixon and Coles (1997), Wright (1997), Dixon and Robinson
(1998), Rue and Salvesen (2000), Koning (2000).

• Golf: Holder and Nevill (1997), Ketzscher and Ringrose (2002).
• Tennis: Holder and Nevill (1997), Jackson and Mosurski (1997), Magnus and

Klaassen (1999a, 1999b).

Let us now focus our attention on a sport championship, in which each
participant plays against every other one, with a double match (home and away).
Usually, but not always, this pattern is used in team sports rather than in individual
ones. We are intended to apply our indices to soccer games, so we will consider
the recent rule of assigning a team three points when it wins, one if it draws, no
points if it loses. Generally, the championship is considered more interesting when
it is well-balanced, and the result of each game is uncertain. We propose here four
simple normalised indices of equality: they are equal to one if the championship is
perfectly well-balanced, and each team gains the same final number of points; on
the other side, each index is equal to zero if the final position is completely
unbalanced. This happens when the first classified team wins all the matches, the
second classified wins all the matches but two (it loses only when playing against
the first team), the third wins all the matches except when playing against the first
and the second, and so on, until we consider the last team, which always loses. We
will denote this limit scheme with CUP (Completely Unbalanced Position).

Let  n  be the number of participants and  Pj the score of the j-th classified
team.Under the 3-1-0 rule, the total number Tn of points depends on the total
number of draws. If there are no draws at all, we have three points for each match,
so the total score will be:

Tn(max)=3n(n-1) (1.1a)

On the opposite side, if all the matches finish with a draw, the total score is:

Tn(min)=2n(n-1)                                                                               (1.1b)

If the final position is perfectly balanced, each team has the same number of
points Tn /n, which is included in the interval  [2(n-1), 3(n-1)].  Under the CUP,
the winner has a final score of 6(n-1) points, the second gets 6(n-2) points, the j-th
gets 6(n-j) and so on. We have then two extreme patterns for the final position:
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Perfect equality: Pj=Tn/n, j∀                                                                 (1.2)

Maximum unbalance (CUP): Pj=6(n-j),j=1,2,3…,n         (1.3)

We propose and develop here three normalised indices of equality, which are
equal to zero under (1.3) and to one under (1.2).

2 Indices of equality

It is very well known that a dispersion measure V, whose value lies between a
minimum V’ and a maximum V’’, may be normalised by applying the linear
transformation:

 
)(

’

)(’’’

’
*

VR

V

VR

V

VV

VV
V −=

−
−=                                                                   (2.1)

where   R(V) = V’’ – V’   is the maximum range of V.    

When V’ = 0, the formula (2.1) becomes simply   V* =
’’V

V
 .

We will then define a generic index of equality by choosing a measure of
dispersion, normalise it by (2.1) and subtract the result from the value 1.  If V is a
regular measure of dispersion, equal to zero in absence of dispersion, we will
define the corresponding index of equality EQ(V):

 EQ(V)=
max

1
V

V−                                                                                (2.2)

We have considered and studied here four indices of equality belonging to the
above defined class (2.2):

EQ1 =
D

SD

S max
1−                (2.3)

where  SD  is the standard deviation of the final position.

EQ2=
R

R

 max
1−                                                                 (2.4)

where R  is the Gini concentration ratio of the final scores.

EQ3=
MAD max

1
MAD−     (2.5)

where MAD  is the mean absolute deviation about the median m̂ , and finally
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EQ4=
*

*

MLS max
1

MLS−   (2.6)

where MLS denotes the mean letter spread, which is the average of the letter
spreads (Hoaglin, 1985), which are the differences of the corresponding letter
values (G+ − G-, F+ − F- etc.).  We have calculated a modified version of the MLS,
in which we include the G letter spread (Brizzi, 2000) and exclude the last but one
letter spread, in order to reduce the weight of the extreme observations. We
decided to exclude the last but one because it repeats the same information of the
previous and following letter spreads.

Example: consider a CUP with n=9:  the data are then:

48 - 42 – 36 – 30 – 24 – 18 – 12 – 6 – 0. Letter values and letter spreads are:

H (median): 24

G values:  30 and 18 Å G spread =  12

F values:  36 and  12  Å F spread =  24

E values:  42  and  6 Å E spread =  36

D values:  45 and  3 Å D spread = 42

C values:  48 and  0  Å C spread = 48.

The mean letter spread is then:

4.32
5

162

5

4842362412 ==++++=MLS

The modified MLS is calculated by excluding the D letter spread, which is the half

sum of the E and C ones:

30
4

120

4

48362412* ==+++=MLS .

3 Maximisation and normalisation

If we want to specify the maxima and to give an explicit expression of the indices
proposed here, we need to study the behaviour of each index in the extreme
situations (1.2) and (1.3). Sometimes the results, as shown below, are slightly
different for even and odd values of  n.  It is very easy to check what happens
under (1.2): SD, R, MAD and MLS* are all equal to zero, and the corresponding
indices of equality are equal to one.
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Let now consider the CUP for deriving the maximum. We start with the index
EQ1, based on the standard deviation (SD), which is equal to zero under the
condition (1.1). We need then to calculate the maximum of SD, which corresponds
to (1.2) situation; as said before, under the CUP the average score is 3(n-1).

max SD =
n
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The index  EQ1  is then defined this way:

 EQ1=1−
)1)(1(3 −+ nn

SD
  (3.2)

We have also to calculate the maximum of R, i.e. the value of the Gini
concentration ratio under the maximum unbalanced situation. Let p’1, p’2, …, p’n
be the number of points of each team, arranged  in an increasing order. The easiest
formula for R (Brizzi, 1996, pag. 52) is the following:
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Under the CUP,  the value of qi is:
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The corresponding value of  R  is then:

max R  
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The index of equality based on R is therefore:
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EQ2=1 −
R
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The third index is based on the MAD. Under the situation (1.3), the median is
equal to the average (the CUP is symmetric), i.e. to 3(n-1). The maximum value of
MAD differs, depending on n being even or odd.

Let n be even, then n = 2h, with h  a positive integer. We have then:
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Let now n be odd, then n = 2h+1, with h a positive integer. The maximum
value of MAD becomes:
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The index  EQ3  is then defined this way:

EQ3=1 −
MAD
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Finally, we considered the fourth index EQ4. Since it is not easy to find an
univoque expression for the maximum, we have calculated the value of the
modified MLS (indicated with MLS*) under the CUP, for n  between 10 and 20,
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which is the range that includes the value of n in the great majority of actual sport
championships. The resulting maxima are reported in the following table:

Table 1: Maximum value of  MLS*  for each value of n between 10 and 20.

 N 10 11 12 13 14 15 16 17 18 19 20

 max MLS* 36 39 43.5 45 51 54 58.5 64.8 70.8 74.4 79.2

Table 2: National Soccer Leagues 1998/99: indices of equality.

 Country n  EQ1 Rank  EQ2 Rank EQ3 Rank   EQ4 Rank
Sweden 14 0.730 1 0.707 1 0.755 1 0.743 1
Czech Rep. 16 0.658 2 0.638 2 0.698 2 0.675 2
Germany 18 0.657 3 0.544 10 0.690 3 0.588 9
Italy 18 0.622 4 0.605 3 0.656 4 0.630 3
Spain 20 0.617 5 0.586 4 0.615 9 0.615 5
England 20 0.606 6 0.583 5 0.652 6 0.619 4
Switzer. 12 0.596 7 0.553 8 0.611 10 0.612 6
Russia 16 0.583 8 0.580 6 0.656 5 0.611 7
France 18 0.579 9 0.562 7 0.623 7 0.602 8
Wales 17 0.574 10 0.474 14 0.592 13 0.522 16
Poland 16 0.552 11 0.547 9 0.620 8 0.583 10
Ireland 12 0.529 12 0.519 12 0.593 12 0.560 11
Turkey 18 0.524 13 0.523 11 0.597 11 0.554 12
Portugal 18 0.511 14 0.474 15 0.556 15 0.531 13
Hungary 18 0.507 15 0.482 13 0.549 16 0.528 14
Holland 18 0.504 16 0.464 17 0.504 19 0.508 17
Belgium 18 0.487 17 0.450 18 0.494 20 0.497 18
Norway 14 0.479 18 0.471 16 0.558 14 0.522 15
Israel 16 0.444 19 0.434 20 0.516 17 0.474 20
Ukraine 16 0.439 20 0.410 21 0.479 21 0.451 22
Croatia 12 0.438 21 0.445 19 0.505 18 0.489 19
Macedonia 14 0.437 22 0.408 22 0.459 24 0.456 21
Belarus 15 0.433 23 0.400 23 0.461 22 0.440 24
Bulgaria 16 0.403 24 0.395 24 0.461 23 0.440 23
Georgia 16 0.394 25 0.359 26 0.443 25 0.406 25
Greece 18 0.390 26 0.365 25 0.424 26,5 0.401 26
Romania 18 0.367 27 0.351 27 0.424 26,5 0.373 27
Slovakia 16 0.365 28 0.325 28 0.385 28 0.370 28
Luxemb. 12 0.344 29 0.319 29 0.310 29 0.336 29
Cyprus 14 0.255 30 0.232 30 0.282 30 0.314 30
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4 Application to European soccer data

We have applied the indices of equality EQ1, EQ2, EQ3, EQ4 to a set of soccer
data, and more precisely to the final positions of 30 European National Soccer
Leagues (including Cyprus, Israel and Turkey) in 1998/99 season. In Table 2 we
have reported the name of the Country, the number of teams n, the equality indices
and the corresponding rank (1 for the first, 30 for the last).

Swedish national league (14 teams) seems to be the most balanced, since it
shows the highest value of all the indices, followed by the Czech Republic (16
teams), while the most unbalanced national leagues, with respect to all the indices,
are held in Cyprus and Luxembourg

We have then studied the degree of association of the indices in this set of 30
data, by computing the Bravais-Pearson correlation coefficient r and the Spearman
rank correlation index rS  between each pair of indices, in order to verify the
degree of consistency between the indices. We have obtained the following
correlation matrices:

Table 3: Linear correlation between the indices of equality
(Bravais-Pearson coefficient).

EQ1 EQ2 EQ3 EQ4

EQ1 1.000 0.973 0.973 0.973

EQ2 1.000 0.974 0.994

EQ3 1.000 0.975

EQ4 1.000

Table 4: Rank correlation between the indices of equality (Spearman coefficient).

EQ1 EQ2 EQ3 EQ4

EQ1 1.000 0.977 0.974 0.976

EQ2 1.000 0.972 0.994

EQ3 1.000 0.970

EQ4 1.000

Therefore, the information given by the four indices about the degree of
equality is quite similar. In particular, EQ2 and EQ4 have a correlation very close
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to one; so, they seem to be almost equivalent. The remaining 5 pairs of indices
show almost the same level of correlation, about 0.975 (i.e. 39/40).

5 Sample distribution of the indices

Finally, we tried to study the sample distribution of the indices defined above. We
simulated with GAUSS package 25,000 soccer championships for each value of  k
and for each index of equality. We worked under the simple hypothesis that all the
participants have the same level of skill, and took into consideration the “home
advantage”, which is very relevant in European soccer, giving a probability of 5/8
to the event “home team wins”, 1/4 to the event “draw match”, 1/8 to the event
“guest team wins”. These probabilities are quite suitable to the real soccer world,
at least according to our set of data.

5.1 Index EQ1 based on standard deviation

In Table 5 we show some statistical features of the simulated sample distribution
of the index of equality EQ1, for some values of n between 10 and 20 (all the n’s
reported in Table 1 are included in this range): average, standard deviation, median
and some tail percentiles.

Table 5: Simulated sample distribution of the index of equality EQ1.

Aver. StD. Median Left tail percentiles Right tail percentiles

n M1(n) S1(n) Me1(n) 1% 2.5% 5% 95% 97.5% 99%

10 0.7413 0.0615 0.7438 0.587 0.614 0.636 0.838 0.854 0.872
12 0.7613 0.0511 0.7627 0.637 0.658 0.675 0.842 0.857 0.873
13 0.7695 0.0473 0.7712 0.654 0.672 0.690 0.845 0.858 0.872
14 0.7766 0.0438 0.7781 0.670 0.687 0.702 0.847 0.859 0.872
15 0.7838 0.0413 0.7851 0.681 0.699 0.714 0.850 0.861 0.873
16 0.7897 0.0387 0.7912 0.695 0.711 0.724 0.851 0.862 0.874

18 0.8010 0.0342 0.8018 0.717 0.731 0.744 0.856 0.865 0.877

20 0.8103 0.0308 0.8110 0.736 0.747 0.758 0.859 0.868 0.878

We can use the tail percentiles of Table 5 as critical values for testing the null
hypothesis that all the participants have the same technical level, and consequently
the probability of winning a game depends only on the home factor. The simulated
sample distribution of EQ1 is plotted in Figure 1.
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Figure 1: Sample distribution of EQ1.

5.2 Index EQ2 based on Gini concentration ratio

In Table 6 we give some statistical features of the simulated sample distribution of
the index of equality EQ2, for some values of n between 10 and 20 (all the n’s
reported in Table 1 are included in this range): average, standard deviation, median
and some tail percentiles.

Table 6: Simulated sample distribution of the index of equality EQ2.

Aver. StD Median Left tail percentiles Right tail percentiles

n M1(n) S1(n) Me1(n) 1% 2.5% 5% 95% 97.5% 99%

10 0.7298 0.0646 0.7317 0.570 0.596 0.619 0.832 0.850 0.868
12 0.7508 0.0541 0.7527 0.618 0.640 0.658 0.836 0.850 0.865
13 0.7583 0.0498 0.7602 0.634 0.655 0.673 0.837 0.850 0.865
14 0.7656 0.0469 0.7675 0.650 0.669 0.685 0.839 0.852 0.866
15 0.7724 0.0435 0.7736 0.665 0.684 0.698 0.841 0.854 0.867
16 0.7789 0.0411 0.7804 0.679 0.696 0.710 0.844 0.855 0.869
18 0.7897 0.0366 0.7909 0.698 0.715 0.727 0.848 0.858 0.869

20 0.8001 0.0333 0.8012 0.718 0.732 0.743 0.853 0.862 0.872
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We can also use the tail percentiles of Table 5 as critical values for testing the
null hypothesis that all the participants have are at the same level, and
consequently the probability of winning a game depends only on the home factor.
The simulated sample distribution of EQ1 is plotted in Figure 2.

Figure 2: Sample distribution of EQ2.

5.3 Index EQ3 based on mean absolute deviation

In Table 7 we report some statistical features of the simulated sample distribution
of the index of equality EQ2, for some values of n between 10 and 20 (all the n’s
reported in Table 1 lie in this range): average, standard deviation, median and
some tail percentiles.

As done before, we can use the tail percentiles of Table 7 as critical values for
testing the null hypothesis that all the participants have the same technical level,
and consequently the probability of winning a game depends only on the home
factor. The simulated sample distribution of EQ3 is plotted in Figure 3.
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Table 7: Simulated sample distribution of the index of equality EQ3.

Aver. StD Median Left tail percentiles Right tail percentiles

n M1(n) S1(n) Me1(n) 1% 2.5% 5% 95% 97.5% 99%

10 0.6443 0.0900 0.6500 0.420 0.450 0.490 0.780 0.810 0.830
12 0.6708 0.0750 0.6736 0.486 0.514 0.542 0.785 0.806 0.826
13 0.6813 0.0701 0.6845 0.500 0.536 0.560 0.792 0.810 0.827
14 0.6924 0.0645 0.6939 0.525 0.556 0.582 0.791 0.811 0.826
15 0.7014 0.0604 0.7054 0.549 0.576 0.598 0.795 0.808 0.826
16 0.7102 0.0563 0.7109 0.570 0.594 0.613 0.797 0.812 0.828

18 0.7251 0.0507 0.7284 0.599 0.620 0.639 0.806 0.818 0.833

20 0.7386 0.0453 0.7400 0.625 0.645 0.660 0.810 0.822 0.838

Figure 3: Sample distribution of EQ3.

5.4 Index EQ4 based on mean letter spread
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(all the n’s reported in Table 1 are included in this range): average, standard
deviation, median and some tail percentiles.

Table 8: Simulated sample distribution of the index of equality EQ4.

Aver. StD Median Left tail percentiles Right tail percentiles

n M1(n) S(n) Me1(n) 1% 2.5% 5% 95% 97.5% 99%

10 0.7606 0.0595 0.7639 0.611 0.639 0.660 0.854 0.868 0.882
12 0.7741 0.0502 0.7759 0.649 0.670 0.690 0.853 0.868 0.879
13 0.7822 0.0461 0.7833 0.664 0.686 0.703 0.856 0.868 0.881
14 0.7878 0.0430 0.7892 0.681 0.699 0.716 0.855 0.868 0.880
15 0.7930 0.0404 0.7940 0.692 0.711 0.725 0.856 0.868 0.880
16 0.7972 0.0379 0.7970 0.703 0.720 0.733 0.857 0.868 0.880
18 0.8079 0.0338 0.8079 0.726 0.740 0.751 0.862 0.870 0.881

20 0.8142 0.0307 0.8150 0.739 0.752 0.762 0.864 0.872 0.883

We can use the tail percentiles of Table 8 as critical values for testing the null
hypothesis that all the participants have the same technical level, and consequently
the probability of winning a game depends only on the home factor. The simulated
sample distribution of EQ4 is plotted in Figure 4.

Figure 4: Sample distribution of EQ4.
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We have finally tried to see what would happen without the “home advantage”:
in Table 9 we have shown the results of the index EQ1 by giving the same
probability to each possible outcome (home wins, draw match, guest wins).

Table 9: Simulated sample distribution of the index of equality EQ1.

Aver. StD Median Left tail percentiles Right tail percentiles

n M1(n) S1(n) Me1(n) 1% 2.5% 5% 95% 97.5% 99%

10 0.7023 0.0686 0.7044 0.534 0.561 0.586 0.812 0.830 0.849
12 0.7250 0.0578 0.7270 0.581 0.606 0.627 0.817 0.833 0.851
13 0.7335 0.0533 0.7353 0.604 0.625 0.643 0.818 0.834 0.849
14 0.7421 0.0499 0.7443 0.620 0.639 0.657 0.821 0.835 0.849
15 0.7502 0.0466 0.7516 0.639 0.656 0.671 0.825 0.838 0.852
16 0.7572 0.0437 0.7585 0.650 0.669 0.684 0.828 0.840 0.852

18 0.7697 0.0393 0.7710 0.674 0.689 0.703 0.832 0.843 0.855

20 0.7810 0.0353 0.7818 0.698 0.710 0.721 0.838 0.847 0.859

If we compare Table 5 and Table 9 we can notice that the general trend does
not seem to change dramatically. The average values are proportionally lower
when eliminating the home advantage (about 5% less), while the standard
deviation increases (from 12% to 15% depending on n), and this is not surprising
if we consider that the probabilities (1/3, 1/3, 1/3) given in Table 9 to the possible
outcomes of a game are more heterogeneous than (5/8, 2/8, 1/8) given before. The
same happens with the other indices.

5.5 Analysis and comparison of the sample distributions

Looking at the results, we have observed that the sample average of each index of
equality increases with n following an approximately linear pattern, while the
sample standard deviation is almost perfectly proportional to n. Actually, if we fit
the recorded sample average of each index with a least squares straight line, we
have the following results:

M1*(n) = 0,6793 +  0,0068 n  (r=+ 0,989)                                                                    (5.1)
M2*(n) = 0,6672 +  0,0069 n  (r = + 0,990)                                                                  (5.2)
M3*(n) = 0,5585 +  0,0093 n  (r = + 0,991)                                                                  (5.3)
M4*(n) = 0,7100 +  0,0054 n  (r = + 0,990),                                                                 (5.4)

where Mi*(n), i= 1, 2, 3, 4 are the theoretical mean values, which are actually not
far from the observed ones, and the values of  ri , all very close to one, give us
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even more evidence that the relation between n and Mi (n) may be satisfactorily
represented with a linear model.

Referring now to the sample standard deviation  Si(n) of the simulated values,
we noticed that the product n ⋅ Si (n) is approximately constant for each i. We can
then define a simple but satisfactory approximation for the standard deviation , by
using  the following expressions:

S1*(n)=
nn 13

8616.0 ≅ .                                                                                 (5.5)

S2*(n)=
nn 23

15655.0 ≅                                                                                   (5.6)

 S3*(n)=
nn 21

19905.0 ≅                                                                                  (5.7)

S4*(n)=
nn 28

17605.0 ≅                                                                                   (5.8)

Finally, if we consider the tail percentiles shown in Tables 5, 6, 7, 8 as critical
values for a statistical test where the null hypothesis is that all the teams have the
same probability to win a game, the only country for which all the indices of
equality lead us to keep the null hypothesis is Sweden.

6 Fitting the sample distribution with a Beta model

Now, we have tried to fit the sample distributions to the standard two-parameters
Beta model:
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The normalising constant B(p,q) in (6.1) is equal to:
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If p and q are both integer numbers, we have:

B(p,q)=
)!1(

)!1()!1(

−+
−−

qp

qp
  (6.2b)

We considered  even values of n from 10 to 20, estimated  p and q  with the
method of moments, rounded the result to the nearest half, in order to have an
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easier task in calculating the Beta operator, and reported the estimates p̂ , q̂  in

Table 10. The estimators are:
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= βα                                                              (6.3)

where y  is the sample average, s2 is the sample variance and m2 is the sample

moment of the second order ( )22
2 sym += .

Table 10: Estimates of the Beta parameters for different values of n.

EQ1 EQ2 EQ3 EQ4

n p̂ q̂ p̂ q̂ p̂ q̂ p̂ q̂

10 37 13 34 12.5 18 10 38 12

12 51 16 48 16 25,5 12,5 53 15.5

14 70 20 62 19 34 15 70.5 19

16 86.5 23 79 22.5 45.5 18.5 90 23

18 109 27 97.5 26 55.5 21 109 26

20 132 31 116 29 68 24 131 30

Looking at Table 10, we notice that the estimated values of the Beta
parameters increase almost linearly as n increases, and that the distribution is
almost equal for the three indices. We have plotted the empirical frequency
function jointly with the correspondent Beta theoretical function, and we saw that
it fits very well. In the following figures we have represented the empirical and
theoretical distribution for EQ1 and k=10 (Figure 5), for EQ2 and k=12 (Figure 6),
for EQ3 and k=14 (Figure 7), for EQ4 and k=16 (Figure 8). Looking at the figures,
it is evident that Beta model can be considered quite appropriate for the sample
distribution of the indices, and that estimation based on moments gives in this
context very good results.
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               Figure 5: Empirical and theoretical Beta d.f.: EQ1  with  n=10.

Figure 6: Empirical and theoretical Beta d.f.: EQ2   with n=12.
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Figure 7: Empirical and theoretical Beta d.f.: EQ3   with  n=14.

Figure 8: Empirical and theoretical Beta d.f.: EQ3   with n=16.
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 7 Concluding remarks

Considering the results described above, we can conclude that all the indices of
equality give similar (and strongly correlated) results in measuring the equality of
a sport championship. Since we are looking for a “quick” index, perhaps EQ1 and
EQ3 are preferable, being easier to calculate. The soccer data show that a “good
level” of equality is reached when the indices are greater than 0.6, and this is
frequently associated with a high technical level: countries like Spain, Italy,
France, England, Germany, where the technical level is outstanding, show high
values for all the indices. On the other side, countries which do not have a good
soccer tradition, like Cyprus and  Luxembourg, show the lowest values, like recent
countries such as Belarus and Slovakia, whose best teams participated to other
leagues in the past.

The simulated sample distribution of each of the indices, under the condition
of equal level of all the competing teams, shows increasing values of the sample
mean as n increases, while the standard deviation decreases. The link between n
and the sample mean is well fitted by a straight line, see (5.1),(5.2),(5.3),(5.4); the
sample standard deviation is approximately proportional to inverse of  n, as
shown in (5.4), (5.5) and Table 9. The tail percentiles indicated in Tables 5, 6, 7, 8
may be used as critical values of a test of significance (the null hypothesis is the
perfect equality of the level). The Beta model, whose parameters may be estimated
with a simple method (like the method of moments) seems very suitable for
representing the sample distribution, as shown in Chapter 6.

The next step on this research topic should be an extension of the study of the
sample distribution, under different conditions (not only the equal level), and/or an
analytical approach to this study, beginning with a small number of participants to
facilitate the analysis; other indices of equality may be proposed as well, by
considering other measures of dispersion and applying (2.2). A possible extension
of this procedure may be as well to study the equality of the participants by taking
into account not only the number of points, but also the number of goals scored in
each match: indeed, scores like 2-1 and 7-0, yield the same number of points to
both teams in the final position, but give a completely different impression about
their level of skill.
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