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Relations among Fisher, Shannon-Wiener and
Kullback Measures of Information for

Continuous Variables

Anton Cedilnik and Katarina Košmelj1

Abstract

In statistics, Fisher was the first to introduce the measure of the amount
of information supplied by the data about the unknown parameter. We
analyze the disadvantages of Fisher information measure for optimization of
sampling designs. To overcome this problem, we modify Fisher information
measure and we upgrade it to the multivariate setting. It turns out that a
reasonable modification of Fisher information measure leads to a special
case of Kullback information measure, both in the univariate and
multivariate setting. Using Shannon’s and Wiener’s concept of information
we also show a simple derivation of Kullback information measure for a
special case when the prior distribution of the parameter is uniform and the
posterior distribution is truncated normal.

1 Introduction

The motivation for our work was to improve the soil sampling design to a new
design where maximum information about the unknown parameters is obtained,
given a fixed budget. The variables under study were the concentrations of several
chemical compounds in soil and the means of these variables were the parameters
of interest.

Information about the unknown parameter is defined as Fisher information
measure, which is a standard statistical concept of information. It turns out that
this concept of information is not applicable in our case. Therefore we review
other concepts.
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The notion of information is very broad. We restricted our work to Fisher’s,
Shannon-Wiener’s and Kullback’s concepts of information. First, we analyze the
disadvantages of Fisher information measure for our optimization purpose. We
modify Fisher information measure to fullfil our purpose and upgrade it to the
multivariate setting. It turns out that a reasonable modification of Fisher
information measure leads to a special case of Kullback information measure, both
in the univariate and multivariate setting. Using Shannon’s and Wiener’s concept
of information we show a simple derivation of Kullback information measure for a
special case, when the prior distribution of the unknown parameter is uniform and
the posterior distribution is truncated normal.

2 Fisher and Kullback information measure

2.1 Fisher information measure and its modifications

In statistics, Fisher was the first to introduce the measure of the amount of
information supplied by data about the unknown parameter. It plays an important
role in the theory of statistical estimation and inference. Fisher defined the amount
of information in a sample about the unknown parameter θ  as the reciprocal of the
variance of θ :
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For our optimization purpose we ascertain the following two disadvantages of
the Fisher information:

• Fisher information is dependent on the measurement unit of variable
and therefore can not be compared for different variables.

• Multivariate approach is not straightforward. Some authors suggest
some compromise of univariate information (Cochran, 1963). A
simplified approach is to specify an importance weight for each variable
and to form a linear combination of the univariate informations. This
approach is difficult to justify: such a linear combination is
meaningless, correlations among the variables are ignored. As an
alternative some authors (Arvantis and Afonja, 1971) advocate the use
of the generalized variance of the sample means - the determinant of the

variance-covariance matrix of the vector parameter :
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This approach takes into consideration the magnitude of the correlations

among the variables, however the measurement units of the original variables are
inherited. For different sets of variables information is not comparable.
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To overcome these drawbacks we tried to modify Fisher information. The first
attempt was to multiply it by the squared expected value of the estimator:
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Here, information for different variables can be compared. This measure is
based on the relative precision of the parameter, it is related to its coefficient of
variation. However, (3a) is a suitable measure of information only for a parameter
with the range [ ]θmax,0 . Therefore, a preferable alternative to (3a) is:
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where: )inf(),sup( θθ == ab   .

Supremum and infimum of the parameter are defined according to the prior
knowledge of researchers.

For the multivariate case with K variables, the following alternative, based on
the generalized variance, turns out to be adequate:
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because it has a meaningful interpretation in the context of the general
information theory. According to this theory information is defined as the
difference between the prior uncertainty and the posterior uncertainty. Let us
consider the following situation: the a priori distribution of the parameter is a

−K dimensional uniform distribution with uncorrelated components on the

parallelotop [ )∏
=
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, , the aposteriori distribution q  is the actual distribution of

the parameter. Then it is easy to see that (4) is equivalent to:
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This leads to the further idea that information should be defined as a function
of the ratio of the generalized variances, as follows:
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To determine function f, which, of course, has to be continuous and strictly
increasing, we additionally require that information is expressed in bits. It turns
out that the logarithm is the unique function which fulfils this condition, which
can be seen as follows. Assume q is also a K-dimensional uniform distribution

with uncorrelated components on the parallelotop [ )∏
=
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i
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for each component iθ , thus in total ∑
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The generalization of Fisher information measure for the multivariate case is
then:
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where q  is any distribution concentrated to the support of the uniform

distribution and
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Consequently, for the univariate setting, the corresponding formula is:
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It is important to notice that the original Fisher measure (1) does not differ
significantly from (5c) which can be rewritten as:
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Both functions have a pole at the origin and a similar behavior near it.

 2.2 Kullback measure and its special case

Kullback (1968) defined directed divergence for binary hypothesis testing.
Hypotheses H0 and H1 imply probability distributions p  and q , respectively, with

a necessary condition about their supports:

      [ ]0)(0)(: =⇒=∀ xqxpx  .

The mean information for discrimination in favour of H1 against H0 when H1 is
true is defined by:
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In another setting, ):( pqI K  is called the relative entropy or Kullback-Leibler

distance between two probability distributions. In can be interpreted as the amount
of information necessary to change a prior probability distribution p  into the

posterior probability distribution q  (Cover and Thomas, 1991). According to this

definition, information is expressed in bits.
Now, let us consider a special case:

• prior distribution p  is uniform on the parallelotop [ )∏
=

K

i
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, ;

• posterior distribution q  is normal, truncated to this parallelotop.

When a parameter is estimated, this situation can often be assumed. Prior to
the study, only the infimum and supremum of the parameter are known. When the
sample data is acquired, normal distribution of the parameter can be assumed due
to the Central Limit Theorem.
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Figure 1: Prior probability distribution p is uniform on [ )ba, , posterior distribution q is
normal truncated to the same interval.

We derived the Kullback-Leibler distance for this case. We have assumed that
normal distribution q  is truncated to the support of the distribution p . If the

truncation of the normal distribution is negligible, e.g. σµσµ 3,3 +>−< ba , the

information is given by:
• multivariate case: K  variables
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• univariate case:
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Derivation of these formulas is long but straightforward. The value of
):( pqI K  in (7a, 7b) is a little bigger if truncation is not negligible.

To sum up: a reasonable modification of the Fisher information measure (5a,
5b) leads to a special case of Kullback information measure (7a, 7b), in the
univariate and multivariate case.

3 Shannon-Wiener like derivation of Kullback
measure

Suppose that we would like to determine, with some measurements, the value of
the unknown parameter θ . The only information about θ  we a priori have is that it

lies on the interval [ )� �� . Then, θ  can be written in a binary form as follows:
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Each digit { })1,0(, ∈ii dd  can be regarded as a random variable:
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and obtaining its value, we gain the information of 1 bit. Knowing θ  exactly, we
would have an infinite information.

More realistic is the situation where we want to know the parameter θ  to some
relevant accuracy. Suppose again that we know only that θ  belongs to the interval

[ )D E� . We want to find its value to the accuracy ε  (i.e. the distance between the

true value θ  and its estimate must be above ε ). It is reasonable to assume that ε
is much smaller than E D− . Diminishing ε  a little more, we can achieve:
E D

Q
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1 .

If we try to guess the value of θ  to the required accuracy, the corresponding
approximation θ ′  is a discrete uniformly distributed random variable:
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According to Shannon (Berger, 1981) and Wiener (1948), the entropy of this
random variable is:
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Now, suppose that we obtained additional information about the parameter θ :
the probability density function for its true value is a continuous function )(xq
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with the support somewhere on the interval [ )ba, : [ ) 0)(, =⇒∉ xqbax . Then, the

corresponding approximation θ ′′  is also represented as a discrete random variable:
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where [ )] D L D L	 ∈ + − +� � �� ε ε  satisfy the equations
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The first sum in the last expression is an integral sum for a continuous
function. For small ε  (i.e. for big Q ) its value is close to
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The sum in the second term equals 1. The information gained with )(xq  is

then, in accordance with Shannon’s theory:
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The last expression in (8) is a form of the expression (6a), with suitable change
of symbol p. Analogous procedure in the multivariate setting gives us (6b) for p
uniform. Therefore, Wiener’s and Shannon’s principles lead us precisely to
Kullback information measure.

4 Conclusions

Considering the situation when the prior distribution of the parameter is uniform
and the posterior distribution is truncated normal, two different approaches
(modified Fisher’s and Shannon-Wiener’s) lead to a special case of  Kullback
information measure (6a, 6b), in the univariate as well as in the multivariate case.

This situation can often be assumed when an unknown parameter is estimated:
the prior knowledge about the parameter is that it lies in a particular interval, the
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posterior knowledge originates from the Central Limit Theorem as a normal
distribution with a reasonably small variance.

We find the formula (6a) interpretable in the following sense: the calculated
information divided by 322.310log2 =  gives an impression of the number of

gained decimal digits of the unknown parameter.
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