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Practical and Theoretical Issues
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Abstract

Social network analysts have tried to capture the idea of social role
explicitly by proposing a framework that precisely gives conditions under
which grouped actors are playing equivalent roles.  They term these
methods positional analysis techniques.  The most general definition is
regular equivalence which captures the idea that equivalent actors are
related in a similar way to equivalent alters.  Regular equivalence gives rise
to a whole class of partitions on a network.  Given a network we have two
different computational problems.  The first is how to find a particular
regular equivalence.  An algorithm exists to find the largest regular partition
but there are no efficient algorithms to test whether there is a regular k-
partition.  That is a partition into k groups that is regular.  In addition, when
dealing with real data, it is unlikely that any regular partitions exist.  To
overcome this problem relaxations of regular equivalence have been
proposed along with optimisation techniques to find nearly regular
partitions.  In this paper we review the algorithms that have been developed
to find particular regular equivalences and look at some of the recent
theoretical results which give an insight into the complexity of finding
regular partitions.

1 Introduction

Ideas of social role have been important to social theorists since the middle of the
century.  Social networks provide an ideal environment in which to formalise the
theoretical concepts of role and position.  Individuals play the same role if they
relate in the same way to other individuals playing counterpart roles.  Hence the
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role of  middle managers in an organisational structure can be determined by their
relationship to higher management and workers.  There is no need for these
individuals to be connected to each other; their role is independent of their
organisation and so they can be in different components of the network.  However,
as we shall see, some models insist that actors playing the same role do so to
exactly the same actors.  Methods which try and capture notions of social role and
related concepts in networks are often referred to as positional analysis techniques.

For clarity of exposition we shall assume, that all networks are graphs or
digraphs without isolates. (The extension to multigraphs with isolates is relatively
simple).  Also we will allow self-loops for both graphs and digraphs.

A coloration of a graph or digraph is an assignment of colours to the vertices.
In any coloration we shall use the notation C(v) to denote the colour of each vertex
v.  If S is a subset of the vertices of a graph or digraph then C(S) is defined by
C(S) = {C(v) : v ∈ S}.

The set of all vertices of a particular colour is called the colour class; the set of
all colour classes is called the colour partition.

2 Regular coloration

The purpose of coloration is to provide a framework in which to develop more
formally the role concept.  Members of the same colour class will be playing the
same role provided they fulfil certain regularity conditions.

The neighbourhood N(v) of a vertex v ∈ V is the set of all vertices which are
adjacent to v.  In a directed graph we define the in-neighbourhood Ni(v) and the
out-neighbourhood No(v) by

Ni(v) = {x: (x,v) ∈ E}
No(v) = {x: (v,x) ∈ E}

It follows that in a digraph N(v) = Ni(v) ∪ No(v).

Coloration:
A coloration of a digraph D(V,E) is regular if and only if for all u,v ∈ V

C(u) = C(v) implies C(Ni(u)) = C(Ni(v))
  and C(No(u)) = C(No(v)).

Obviously for graphs we simply require C(N(u)) = C(N(v)).
Regular coloration is an alternative formulation (Everett and Borgatti, 1991) of

regular equivalence (White and Reitz, 1983).
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Figure 1: Regularly coloured digraph  (R = Red, Y = Yellow, G = Green).

In the regularly coloured digraph of Figure 1 we note that the out-neighbours
of the red vertices are all yellow;  the out-neighbours of the yellow vertices are
green and the in-neighbours are red;  the out-neighbours of the green vertices are
green and the in-neighbours are green and yellow.  The number of vertices each is
connected to does not matter, one red is connected to one yellow whilst the other
is connected to two yellows.  It is important that each vertex is connected to or
from a vertex in its colour neighbourhood;  hence every green must receive a
connection from a yellow and a green.

Any colour partition induces an equivalence relation on the vertex set with the
distinct equivalence classes corresponding to the colour classes.  Conversely any
equivalence class will induce a coloration.

Theorem: Let D(V,E) be a digraph and ≡ an equivalence relation on v.  If ≡ is
such that for all a,b,c,∈ V, a ≡ b implies both

1. aEc implies there exists d∈V such that bEd and d≡c,
2. cEa implies there exists d∈V such that dEb and d≡c,

then ≡ induces a regular colouring on D.  Conversely if ≡ is an equivalence
relation induced by a regular colouring then ≡ satisfies the conditions given above.

The above theorem gives an alternative formulation of regular colorations in
terms of equivalence relations.  An equivalence relation which induces a regular
coloration will be called a regular equivalence.  This is the original formulation
proposed by White and Reitz.

For any graph or digraph the trivial partition w(V) which places every vertex
in its own equivalence class induces a regular coloration.  For any particular graph
or digraph D there will be a non-empty collection of regular coloration which we
shall denote by R(D).  The graph in Figure 2 has 9 regular colorations out of a
possible 15 colorations.

G
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Figure 2: Sample graph.

The regular colorations can be partially ordered by the refinement relation <.
If Po and P1 are partitions of a vertex set V; then Po < P1 if for every A ∈ Po, there
exists a B ∈ P1 such that A ⊂ B.  Figure 3 is pictorial representation of this partial
order for the graph in Figure 2.

Figure 3: Pictorial representation of partial order.

This diagram suggests that (R(D), <) is actually a lattice.  This result was
proved by Borgatti and Everett (1989).

The proof describes how to join together regular colorations to make new
regular colorations.  Forming the meet is however more complicated;  it is fairly
easy to construct examples which demonstrate that unlike the join the meet is not
the same as the meet of equivalence classes.

1 2

3 4
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A consequence of the result above is that there will always be a maximal
regular coloration.  For the graph in Figure 2 this was the complete partition i(G)
in which every vertex is the same colour.  In general, in connected graph, the
complete colour partition i(D) is regular (and obviously maximal) if and only if D
contains no sources or sinks. Consequently in an undirected graph i(G) is the
maximal regular coloration.

Unfortunately, for many digraphs with sources or sinks the maximal regular
coloration may only be the equality partition.  For graphs and digraphs without
sources and sinks the complete partition is regular, but it may happen that there are
no smaller partitions except the equality partition, in these cases strict regular
colorations  are not much use.

A graph or digraph D with three or more vertices which does not possess a
regular coloration different from i(D) or w(D) is called role-primitive.

It is easy to see that the digraph in Figure 4 is role-primitive.

Figure 4: Role-primitive digraph.

The existence of graphs (as opposed to digraphs) which are role-primitive is
more complicated;  the graph shown in Figure 5 is an example (smaller examples
do exist).

Figure 5: Role-primitive graph.

The lattice of all regular colorations may contain a large number of elements.
For instance the complement of  the graph Figure 5 has over 1,000 regular
colorations.  Any of these coloration is acceptable as a model for role analysis;  the
difficulty faced by the researcher is to identify which of the colorations is best
suited to the situation in question.  Generating all possible colorations is in itself a
computationally difficult tasks.  Consequently there is a need to develop certain
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colorations which have properties which can be identified by the researcher as
being important for any particular analysis.  For a directed graph with sources or
sinks this may be the maximal regular coloration; however obviously this would
not be of use in other cases.  In the following two sections we investigate the more
important regular colorations.

3 Automorphic equivalence

In this section we begin to investigate certain types of regular colorations which
group together vertices which possess identical structural properties (Winship and
Mandel, 1983; Everett, 1985).

Let D(V,E) be a labelled graph.  An automorphism of D is a permutation π of
V such that aEb if and only if π(a)Eπ(b) ∀a,b ∈ V.  Two vertices c,d ∈ V are
automorphically equivalent if there exists an automorphism π such that π(c)= d.

The set of all automorphisms of a digraph D form a group under the operation
of composition which we shall denote by Aut(D).

Let D(V,E) be a digraph and H a subgroup of Aut(D).  Two vertices a,b ∈ V
belong to the same orbit of H if and only if π(a) = b for some π ∈ H.

The orbits of H are therefore the maximal sets of autmorphically equivalent
vertices of D for which the automorphisms are restricted to those in H.  It is easy
to show that belonging to the same orbit is an equivalence relation and hence the
orbits partition the vertices of D.

Everett and Borgatti (1991) show that colouring each orbit of any subgroup H
of Aut(D) forms a regular coloration of D.

4 Structural equivalence

Structural equivalence was the first mathematical formalisation of the role concept
(Lorrain and White, 1971).  Originally the concept was introduced using the
terminology of category theory but we shall give a graph theoretic definition here.
This definition makes it difficult to appreciate the use of the ‘functional
reductions’ which were central to the concept when it was originally introduced.

Two vertices a,b of a digraph D are structurally equivalent if and only if (a,b)
is an automorphism.

It is easy to see that any partition which places together structurally equivalent
vertices will induce a regular coloration.

The regular coloration in which each colour class consists of all structurally
equivalent vertices is called the maximal structural coloration.

The definition of structural equivalence is the strictest of all the role models
introduced.  Two vertices are structurally equivalent only if they connect to exactly
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the same vertices in the graph or digraph.  Hence two vertices in different
components of a graph cannot be structurally equivalent (unless, of course, they
are isolates).  Consequently structurally equivalent actors not only play the same
role but they play the same role to the same people.  This is clearly a lot stricter
than automorphic in which individuals play the same role to equivalent people.  If
we consider the example of parents and children then the structurally equivalent
children would have the same parents;  so that structural equivalence captures the
brother/sister role.  Automorphically equivalent children would come from
families of the same size;  and maximal regular equivalence would place together
all children.

5 Computation

5.1 Maximal regular coloration

There is a simple polynomial time algorithm which finds the regular coloration
which uses the fewest colours.  This algorithm can be summarised as (Everett and
Borgatti, 1997)

1. colour all vertices the same
2. for each colour pick a representative colour
3. for each representative: check the regular coloration condition against

all vertices in the same colour class. Re-colour all vertices which fail
the condition with a new colour.  If no re-colouring occurs stop:
otherwise go to 2.

Unfortunately this algorithm is of little practical use.  It requires the graph to
have sources or sinks (otherwise the result is trivial) and even then it often
produces a trivial result in which every vertex is coloured differently.  On real data
the REGE algorithm yields a measure of regular equivalence.  This algorithm was
developed by Lee Sailor, John Boyd, Douglas White and Karl Reitz although they
never published a description.  Details can be found in Wasserman and Faust
(1994).  This algorithm still cannot be used on un-directed data or data without
sources or sinks as it will again produce trivial results.

5.2 Structural equivalence

It is a simple matter to find if any pair of vertices are structurally equivalent.
Algorithms have been developed to measure the degree of structural equivalence
between any pair of vertices.  One of the most common is the profile similarity
method in which the row and column of the adjacency matrix of a vertex are
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connected to form a profile.  The similarity of these profiles is measured by their
distance apart in Euclidean space, or their correlations are taken as a measure of
structural equivalence.  If the data are pure adjacencies then these are sometimes
converted to geodesic distances before constructing the profiles (Burt, 1976).

5.3 Automorphic equivalence

A ‘foolproof’ algorithm for finding all automorphically equivalent vertices is
computationally very difficult (it is not known whether this problem is NP-
complete or not) and is equivalent to solving the graph isomorphism problem.
However, efficient (polynomial) algorithms have been proposed which solve the
problem for all but a handful of graphs.  These algorithms are based upon
separating vertices into different orbits if they do not share certain properties.  Eg.
if vertex x has a different centrality measure than y then they must be in different
orbits.

Borgatti, Everett and Freeman (1999) have implemented an algorithm based on
this principle which can be seen as an extension of the profile similarity method.
The profiles are constructed as in the structural equivalence method but before
they are compared the elements in the profiles are sorted.  If the original data
consists of a simple adjacency matrix then this should be converted to a geodesic
distance matrix.   These distances then need to be transformed so that when a
correlation or Euclideon distance is taken smaller values have greater influence.
We expect immediate and close neighbours to be of more influence than those at a
distance.  The simplest transformation is to take the reciprocal of the non-zero
elements.  We demonstrate this method on the undirected graph in Figure 6.

Figure 6: Undirected graph.

It is easy to see that 3 and 4 are structurally equivalent and that 7 (and 8) are
automorphically equivalent to both 3 and 4.  The standard profiles of 3 and 4 are
(1,1,0,0,1,0,0,0,0,0) and since they are identical we conclude that 3 and 4 are
structurally equivalent.  The standard profile of 7 is (0,0,0,0,0,1,0,0,1,1) which is
clearly different.  The distance profiles for 3,7 and 1 are given by
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profile (1) = (0,1,1,1,2,3,4,5,4,5)
profile (3) = (1,1,0,2,1,2,3,3,4,4)
profile (7) = (4,4,3,3,2,1,0,2,1,1)

If we now arrange the elements in ascending order we obtain the following
profile ′(1) = (0,1,1,1,2,3,4,4,5,5)
profile ′(3) = (0,1,1,1,2,2,3,3,4,4)
profile ′(7) = (0,1,1,1,2,2,3,3,4,4)

We immediately see that 3 and 7 are identical and that 1 is different.  We can
provide a measure of all pairs by taking reciprocals before comparing profiles.

An alternative methods has been proposed by Sparrow (1993) using numerical
signatures.  This is a neat method and is based upon extending the idea of degree
sequences of neighbourhoods.  Suppose a vertex j is adjacent to a set of nodes
which have degrees 1,1,1,4 and 7.  We then combine these into a unique number
which is independent of any permutation of the vertices.  We form Sj,1 (1 + π)(1 +
π) (1 + π) (4 + π) (7 + π)

The use of the transcendental number π means that Sj,i can only be formed
from 1,1,1,4 and 7.  This is then iterated so that Sj, k  + 1 = Π (π + Sj,k)

This iteration means that the degree sequence of the higher order
neighbourhoods are taken into account.  Finally we need to modify S so that it can
take account of different cycle lengths.  We use a different transcendental number
(e in this case) so that our uniqueness property is preserved.

Sj,k+1 = (Nk+1(j)+ e) Π (Π + Sj,k).
This unique (theoretically it need not be unique since the iterative nature of the

construction means that it is possible to produce the same number from a different
graph) can then be used to partition the graph.  Unfortunately the signatures
themselves do not have any meaning – but this could be a fruitful line of research.

5.4 Combinational optimisation

An alternative approach is to specify the number of colours in advance and find
coloration which is nearly regular.  The cost of a coloration is the minimum
number of edge changes (deletion or addition) required to make the coloration
regular.  The cost of a regular coloration is therefore zero.  Once a cost has been
established then we can use standard combinational optimisation techniques to
find the coloration which has the lowest cost.  Batagelj et al. (1992) first suggested
this approach and they use local search.  Others here used genetic algorithms,
simulated annealing or tabu search.
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6 Algorithmic complexity

We have already mentioned the complexity of finding the automorphically
equivalent vertices.  We also gave a polynomial time algorithm for finding the
maximal regular coloration and we noted that it is easy to find structurally
equivalent vertices.  The use of combinatorial optimisation routines to find
colorations with a specified number of colours suggests that these are non-trivial
problems.

We now look at the complexity of finding if a regular coloration exists with a
specified number of colours.  We shall suppose that our graphs or digraphs have n
vertices.  The image graph of a coloration is a graph (or digraph) with colours as
vertices and an edge connects colour A to colour B if there is an edge joining a
vertex coloured A to a vertex coloured B in the original graph.

Suppose we wish to check for n-colours.  Since this is always a regular
coloration then there is nothing to do and the problem is in the class P.  It is also
easy to check for n-1 colours.  In this case the pair of vertices coloured the same
must be connected to and from the same vertices (that is they are structurally
equivalent) and hence this belongs to the class P.

At the other extreme suppose we wish to use just one colour.  Clearly this must
be in the class P since we simply colour all the vertices and check it is regular.
However as in the n-1 case we can characterise the graphs and digraph which have
a 1-regular coloration.  For a graph to have a 1–regular coloration it is either the
null graph or is a graph with no isolates.

For a digraph it is either the null graph or it has no sources, sinks or isolates.
The simplest interesting case is a 2-regular coloration and this was investigated

for graphs by Roberts and Sheng (1999).  They show that finding a 2-regular
coloration for a graph belongs to the class NP.  It follows that for digraphs the
problem cannot be in P and almost certainly belongs to the class NP as well.  In
addition they show that for certain image graphs we can characterise 2-regular
colorations.  These are as follows.  If G was the original graph then the following
image graphs are possible:

R1 R2

R3 R4

• R1 is possible iff G is a null graph
• R2 is possible iff G has at least one edge and at least one isolated vertex
• R3 is possible iff G is disconnected with no isolates
• R4 is possible iff G is bipartite with no isolates.
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The problem of determining whether the two remaining images are possible
both belong to the class NP.

We can similarly characterise 7 of the 10 possible digraph images.  These are
as follows where D was the original digraph.

R1 R2

R3 R4

R5 R6

R7

• R1 is possible iff D is a null graph.
• R2 is possible iff D has isolates but no sources or sinks.
• R3 is possible iff D is disconnected with no sources, sinks or isolates.
• R4 is possible iff D has no isolates and every vertex is a source or sink.
• R5 is possible iff D has no sources, sinks or isolates and the underlying graph is

bipartite.
• R6 is possible iff D has no isolates or sinks but contains at least one source.
• R7 is possible iff D has no isolates or sources but contains at least one sink.
• We conjecture that the 3 remaining images give rise to problems which are

members of the class NP.
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