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Applying the Minimax Principle to Sequential
Mastery Testing

Hans J. Vos1

Abstract

The purpose of this paper is to derive optimal rules for sequential
mastery tests. In a sequential mastery test, the decision is to classify a
subject as a master, a nonmaster, or to continue sampling and administering
another random item. The framework of minimax sequential decision theory
(minimum information approach) is used; that is, optimal rules are obtained
by minimizing the maximum expected losses associated with all possible
decision rules at each stage of sampling. The main advantage of this
approach is that costs of sampling can be explicitly taken into account. The
binomial model is assumed for the probability of a correct response given
the true level of functioning, whereas threshold loss is adopted for the loss
function involved. Monotonicity conditions are derived, that is, conditions
sufficient for optimal rules to be in the form of sequential cutting scores.
The paper concludes with a simulation study, in which the minimax
sequential strategy is compared with other procedures that exist for similar
classification decision problems in the literature.

1 Introduction

Well-known examples of fixed-length mastery tests include pass/fail decisions in
education, certification, and successfulness of therapies. The fixed-length mastery
problem has been studied extensively in the literature within the framework of
(empirical) Bayesian decision theory (e.g., De Gruijter & Hambleton, 1984; van
der Linden, 1990). In addition, optimal rules for the fixed-length mastery problem
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have also been derived within the framework of the minimax strategy (e.g., Huynh,
1980; Veldhuijzen, 1982).

In both approaches, the following two basic elements are distinguished: A
psychometric model relating the probability of a correct response to student’s
(unknown) true level of functioning, and a loss structure evaluating the total costs
and benefits for each possible combination of decision outcome and true level of
functioning. Within the framework of Bayesian decision theory (e.g., DeGroot,
1970; Lehmann, 1959), optimal rules (i.e., Bayes rules) are obtained by
minimizing the posterior expected losses associated with all possible decision
rules. Decision rules are hereby prescriptions specifying for each possible
observed response pattern what action has to be taken. The Bayes principle
assumes that prior knowledge about student’s true level of functioning is available
and can be characterized by a probability distribution called the prior.

Using minimax decision theory (e.g., DeGroot, 1970; Lehmann, 1959), optimal
rules (i.e., minimax rules) are obtained by minimizing the maximum expected
losses associated with all possible decision rules. In fact, the minimax principle
assumes that it is best to prepare for the worst and to establish the maximum
expected loss for each possible decision rule (e.g., van der Linden, 1981). In other
words, the minimax decision rule is a bit conservative and pessimistic (Coombs,
Dawes, & Tversky, 1970).

The test at the end of the treatment does not necessarily have to be a fixed-
length mastery test but might also be a variable-length mastery test. In this case, in
addition to the actions declaring mastery or nonmastery, also the action of
continuing sampling and administering another item is available. Variable-length
mastery tests are designed with the goal of maximizing the probability of making
correct classification decisions (i.e., mastery and nonmastery) while at the same
time minimizing test length (Lewis & Sheehan, 1990). For instance, Ferguson
(1969) showed that average test lengths could be reduced by half without
sacrificing classification accuracy.

Generally, two main types of variable-length mastery tests can be
distinguished. First, both the item selection and stopping rule (i.e., the termination
criterion) are adaptive. Student’s ability measured on a latent continuum is
estimated after each response, and the next item is selected such that its difficulty
matches student’s last ability estimate. Hence, this type of variable-length mastery
testing assumes that items differ in difficulty, and is denoted by Kingsbury and
Weiss (1983) as adaptive mastery testing (AMT).

In the second type of variable-length mastery testing, the stopping rule only is
adaptive but the item to be administered next is selected random. In the following,
this type of variable-length mastery testing will be denoted as sequential mastery
testing (SMT). The purpose of this paper is to derive optimal rules for SMT using
the framework of minimax sequential decision theory (e.g., DeGroot, 1970;
Lehmann, 1959). The main advantage of this approach is that costs of sampling
(i.e., administering another random item) can be explicitly taken into account.
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2 Review of existing procedures to variable-length
mastery testing

In this section, earlier solutions to both the adaptive and sequential mastery
problem will be briefly reviewed. First, earlier solutions to AMT will be
considered. Next, it will be indicated how SMT has been dealt with in the
literature.

2.1 Earlier solutions to adaptive mastery testing

In adaptive mastery testing, two item response theory (IRT)-based strategies have
been primarily used for selecting the item to be administered next. First,
Kingsbury and Weiss (1983) proposed the item to be administered next is the one
that maximizes the amount of (Fisher’s) information at student’s last ability
estimate.

In the second IRT-based approach, the Bayesian item selection strategy, the
item that minimizes the posterior variance of student’s last ability estimate is
administered next. In this approach, a prior distribution about student’s ability
must be specified. If a normal distribution is assumed as a prior, an estimate of the
posterior distribution of student’s last ability, given observed test score, may be
obtained via a procedure called restricted Bayesian updating (Owen, 1975). Also,
posterior variance may be obtained via Owen’s Bayesian scoring algorithm.
Nowadays, numerical procedures for computing posterior ability and variance do
also exist.

Both IRT-based item selection procedures make use of confidence intervals of
student's latent ability for deciding on mastery, nonmastery, or to continue
sampling. Decisions are made by determining whether or not a prespecified cut-off
point on the latent IRT-metric, separating masters from nonmasters, falls outside
the limits of this confidence interval.

As an aside, as pointed out by Chang and Stout (1993), it may be noted that the
posterior variance converges to the reciprocal of the test information when the
number of items goes to infinity. Therefore, the two methods of IRT-based item
selection strategies should yield similar results when the item number is large.

2.2 Existing procedures to the sequential mastery problem

One of the earliest approaches to sequential mastery testing dates back to Ferguson
(1969) using Wald's well-known sequential probability ratio test (SPRT),
originally developed as a statistical quality control test for light bulbs in a
manufacturing setting. In Ferguson's approach, the probability of a correct
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response given the true level of functioning (i.e., the psychometric model) is
modeled as a binomial distribution. The choice of this psychometric model
assumes that, given the true level of functioning, each item has the same
probability of being correctly answered, or that items are sampled at random.

As indicated by Ferguson (1969), three elements must be specified in advance
in applying the SPRT-framework to sequential mastery testing. First, two values p0

and p1 on the proportion-correct metric must be specified representing points that
correspond to lower and upper limits of true level of functioning at which a
mastery and nonmastery decision will be made, respectively. Also, these two
values mark the boundaries of the small region (i.e., indifference region) where we
never can be sure to take the right classification decision, and, thus, in which
sampling will continue. Second, two levels of error acceptance α and β must be
specified, reflecting the relative costs of the false positive (i.e., Type I) and false
negative (i.e., Type II) error types. Intervals can be derived as functions of these
two error rates for which mastery and nonmastery is declared, respectively, and for
which sampling is continued (Wald, 1947). Third, a maximum test length must be
specified in order to classify within a reasonable period of time those students for
whom the decision of declaring mastery or nonmastery is not as clear-cut.

Reckase (1983) has proposed an alternative approach to sequential mastery
testing within an SPRT-framework. Unlike Ferguson (1969), Reckase (1983) did
not assume that items have equal characteristics but allowed them to vary in
difficulty and discrimination by using an IRT-model instead of a binomial
distribution. Modeling response behavior by an IRT model, as in Reckase’s (1983)
model, Spray and Reckase (1996) compared Wald’s SPRT procedure also with a
maximum information item selection (MIIS) procedure (Kingsbury and Weiss,
1983). The results showed that under the conditions studied, the SPRT procedure
required fewer test items than the MIIS procedure to achieve the same level of
classification accuracy. This finding is consistent with Wald’s (1947) conclusion
that the SPRT was the uniformly most powerful test of simple hypotheses.

Recently, Lewis and Sheehan (1990), Sheehan and Lewis (1992), and Smith
and Lewis (1995) have applied Bayesian sequential decision theory (e.g., DeGroot,
1970; Lehmann, 1959) to SMT. In addition to a psychometric model and a loss
function, cost of sampling (i.e., cost of administering one additional item) must be
explicitly specified in this approach. Doing so, posterior expected losses
associated with the nonmastery and mastery decisions can now be calculated at
each stage of sampling. As far as the posterior expected loss associated with to
continue sampling concerns, this quantity is determined by averaging the posterior
expected losses associated with each of the possible future decision outcomes
relative to the probability of observing those outcomes (i.e., the posterior
predictive distributions).

Optimal rules (i.e., Bayesian sequential rules) are now obtained by choosing
the action that minimizes posterior expected loss at each stage of sampling using
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techniques of dynamic programming (i.e., backward induction). This technique
starts by considering the final stage of sampling and then works backward to the
first stage of sampling. Backward induction makes use of the principle that upon
breaking into an optimal procedure at any stage, the remaining portion of the
procedure is optimal when considered in its own right. Doing so, as pointed out by
Lewis and Sheehan (1990), the action chosen at each stage of sampling is optimal
with respect to the entire sequential mastery testing procedure.

Lewis and Sheehan (1990) and Sheehan and Lewis (1992), as in Reckase’s
approach, modeled response behavior in the form of a 3-parameter logistic (PL)
model from IRT. The number of possible outcomes of future random item
administrations, needed in computing the posterior expected loss associated with
the continuing sampling option, can become very quick quite large. Lewis and
Sheehan (1990), therefore, made the simplification that the number-correct score
in the 3-PL model is sufficient for calculating the posterior predictive distributions
rather than the entire pattern of item responses.

As an aside, it may be noted that Lewis and Sheehan (1990), Sheehan and
Lewis (1992), and Smith and Lewis (1995) used testlets (i.e., blocks of items)
rather than single items.

Vos (1999) also applied the framework of Bayesian sequential decision theory
to SMT. As in Ferguson’s (1969) approach, however, the binomial distribution
instead of an IRT-model is considered for modeling response behavior. It is shown
that for the binomial distribution, in combination with the assumption that prior
knowledge about student’s true level of functioning can be represented by a beta
prior (i.e., its natural conjugate), the number-correct score is sufficient to calculate
the posterior expected losses at future stages of item administrations. Unlike the
Lewis and Sheehan (1990) model, therefore, no simplifications are necessary to
deal with the combinatorial problem of the large number of possible decision
outcomes of future item administrations.

3 Minimax sequential decision theory applied to SMT

In this section, the framework of minimax sequential decision theory (e.g.,
DeGroot, 1970; Lehmann, 1959) will be treated in more detail. Also, a rationale is
provided for why this approach should be preferred above the Bayesian sequential
principle.

3.1 Framework of minimax sequential decision theory

In minimax sequential decision theory, optimal rules (i.e., minimax sequential
rules) are found by minimizing the maximum expected losses associated with all
possible decision rules at each stage of sampling. Analogous to Bayesian
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sequential decision theory, cost per observation is also explicitly been taken into
account in this approach. Hence, the maximum expected losses associated with the
mastery and nonmastery decisions can be calculated at each stage of sampling. The
maximum expected loss associated with the continuing sampling option is
computed by averaging the maximum expected losses associated with each of the
possible future decision outcomes relative to the posterior predictive probability of
observing those outcomes.

Unlike Bayesian sequential decision theory, specification of a prior is not
needed in applying the minimax sequential principle. A minimax sequential rule,
however, can be conceived of as a rule that is based on minimization of posterior
expected loss as well (i.e., as a Bayesian sequential rule), but under the restriction
that the prior is the least favorable element of the class of priors (e.g., Ferguson,
1967).

3.2 Rationale for preferring the minimax principle above the
Bayesian principle

The question can be raised why minimax sequential decision theory should be
preferred above the Bayesian sequential principle. As pointed out by Huynh
(1980), the minimax (sequential) principle is very attractive when the only
information is student’s observed number-correct score; that is, no group data of
’comparable’ students who will take the same test or prior information about the
individual student is available. The minimax strategy, therefore, is sometimes also
denoted as a minimum information approach (e.g., Veldhuijzen, 1982).

If group data of ’comparable’ students or prior information about the individual
student is available, however, it is better to use this information. Hence, in this
situation it is better to use Bayesian instead of minimax sequential decision theory.
Even if information in the form of group data of ’comparable’ students or prior
information about the individual student is available, it is sometimes too difficult a
job to accomplish to express this information into a prior distribution
(Veldhuijzen, 1982). In these circumstances, the minimax sequential procedure
may also be more appropriate.

4 Notation

Within the framework of both minimax and Bayesian sequential decision theory,
optimal rules can be obtained without specifying a maximum test length. In the
following, however, a sequential mastery test is supposed to have a maximum test
length n (n ≥ 1). As pointed out by Ferguson (1969), a maximum test length is
needed in order to classify within a reasonable period of time those students for
whom the decision of declaring mastery or nonmastery is not as clear-cut.
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Let the observed item response at each stage of sampling k (1 ≤ k ≤ n) for a
randomly sampled student be denoted by a discrete random variable Xk, with
realization xk. The observed response variables X1,...,Xk are assumed to be
independent and identically distributed for each value of k, and take the values 0
and 1 for respectively incorrect and correct responses to the k-th item.
Furthermore, let the observed number-correct score be denoted by a discrete
random variable Sk = X1 +...+ Xk, with realization sk = x1 +...+ xk (0 ≤ sk ≤ k).

Student’s true level of functioning is unknown due to measurement and
sampling error. All that is known is his/her observed number-correct score sk. In
other words, the mastery test is not a perfect indicator of student’s true
performance. Therefore, let student’s true level of functioning be denoted by a
continuous random variable T on the latent proportion-correct metric, with
realization t ∈ [0,1].

Finally, a criterion level tc (0 ≤ tc ≤ 1) on the true level of functioning scale T
can be identified. A student is considered a true nonmaster and true master if
his/her true level of functioning t is smaller or larger than tc, respectively. The
criterion level must be specified in advance by the decision-maker. Several
methods for setting standards on the observed score level have been proposed in
the literature (e.g., Angoff, 1971; Nedelsky, 1954). However, these standard
setting methods do not apply to the true level of functioning T. The criterion level
tc on the true level of functioning T, therefore, must be set by content experts by
indicating the minimal percentage of the total domain of items a student must be
able to answer correctly in order to be declared mastery status.

Assuming X1 = x1,...,Xk = xk has been observed, the two basic elements of
minimax sequential decision making discussed earlier can now be formulated as
follows: A psychometric model f(skt) relating observed number-correct score sk to
student’s true level of functioning t at each stage of sampling k, and a loss function
describing the loss l(ai(x1,...,xk), t) incurred when action ai(x1,...,xk) is taken for the
student whose true level of functioning is t. The actions nonmastery, mastery, and
to continue sampling will be denoted as a0(x1,...,xk), a1(x1,...,xk), and a2(x1,...,xk),
respectively.

5 Threshold loss

Generally speaking, as noted before, a loss function evaluates the total costs and
benefits of all possible decision outcomes for a student whose true level of
functioning is t. These costs may concern all relevant psychological, social, and
economic consequences which the decision brings along. The Bayesian as well as
minimax approach allows the decision-maker to incorporate into the decision
process the costs of misclassifications (i.e., students for whom the wrong decision
is made). As in Hambleton and Novick (1973), here the well-known threshold loss
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function is adopted as the loss structure involved. The choice of this loss function
implies that the "seriousness" of all possible consequences of the decisions can be
summarized by possibly different constants, one for each of the possible
classification outcomes.

For the sequential mastery problem, a threshold loss function can be
formulated as a natural extension of the one for the fixed-length mastery problem
at each stage of sampling k as follows (see also Lewis & Sheehan, 1990):

Table 1: Table for threshold loss function at stage k (1 ≤ k ≤ n) of sampling.

True Level
of Functioning

Action

T ≤ tc T > tc

a0(x1, ..., xk) ke l01 + ke

a1(x1, ..., xk) l10 + ke ke

The value e represents the costs of administering one random item. For the
sake of simplicity, following Lewis and Sheehan (1990), these costs are assumed
to be equal for each classification outcome as well as for each sampling occasion.
Of course, these two assumptions can be relaxed in specific sequential mastery
testing applications. Applying an admissible positive linear transformation (e.g.,
Luce & Raiffa, 1957), and assuming the losses l00 and l11 associated with the
correct classification outcomes are equal and take the smallest values, the
threshold loss function in Table 1 was rescaled in such a way that l00 and l11 were
equal to zero. Hence, the losses l01 and l10 must take positive values.

Note that no losses need to be specified in Table 1 for the continuing sampling
action (a2(x1,...,xk)). This is because the maximum expected loss associated with
the continuing sampling option is computed at each stage of sampling as a
weighted average of the maximum expected losses associated with the
classification decisions (i.e., mastery/nonmastery) of future item administrations
with weights equal to the probabilities of observing those outcomes.

The ratio l10/l01 is denoted as the loss ratio R, and refers to the relative losses
for declaring mastery to a student whose true level of functioning is below tc (i.e.,
false positive) and declaring nonmastery to a student whose true level of
functioning exceeds tc (i.e., false negative).

The loss parameters lij (i = 1,2; i ≠ j) associated with the incorrect decisions
have to be empirically assessed, for which several methods have been proposed in
the literature. Most texts on decision theory, however, propose lottery methods
(e.g., Luce & Raiffa, 1957) for assessing loss functions empirically. In general, the
consequences of each pair of actions and true level of functioning are scaled in
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these methods by looking at the most and least preferred outcomes. But, in
principle, any psychological scaling method can be used.

6 Psychometric model

As earlier remarked, here the well-known binomial model will be adopted for
specifying the statistical relation between the observed number-correct score sk and
student’s true level of functioning t. Its distribution f(skt) at stage k of sampling,
given student’s true level of functioning t, can be written as follows:

( | ) (1 )k ks k s
k

k

k
f s t t t

s
− 

= − 
 

. (1)

If each response is independent of the other, and if the examinee's probability
of a correct answer remains constant, the distribution function of sk, given
student’s true level of functioning t, is given by Equation 1 (Wilcox, 1981). The
binomial model assumes that the test given to each student is a random sample of
items drawn from a large (real or imaginary) item pool (Wilcox, 1981). Therefore,
for each student a new random sample of items must be drawn in practical
applications of the sequential mastery problem.

7 Sufficient conditions for minimax sequential rules to
be monotone

Linking up with common practice in mastery testing, minimax sequential rules in
this paper are assumed to have monotone forms. Decision rules in practical
situations in education and psychology usually take the form of selecting one or
more cutting scores on the test. Decision rules of this form constitute a special
subclass known as monotone rules (Ferguson. 1967, Sect. 6.1). In other words, a
decision rule is monotone if cutting scores are used to partition the test scores into
intervals for which different actions are taken. As a result, monotone sequential
rules can be defined on the number-correct score metric in the form of sequential
cutting scores. The restriction to monotone rules, however, is correct only if it can
be proven that for any nonmonotone rule for the problem at hand there is a
monotone rule with at least the same value on the criterion of optimality used
(Ferguson, 1967, p. 55). Using a minimax sequential rule, as noted before, the
minimum of the maximum expected losses associated with all possible decision
rules is taken as the criterion of optimality at each stage of sampling.
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As noted before, the maximum expected loss for continuing sampling is hereby
determined by averaging the maximum expected losses associated with each of the
possible future decision outcomes relative to the probability of observing those
outcomes. Therefore, it follows immediately that the conditions sufficient for
setting cutting scores for the fixed-length mastery problem are also sufficient for
the sequential mastery problem at each stage of sampling.

Generally, conditions sufficient for setting cutting scores for the fixed-length
mastery problem are given in Ferguson (1967). First, f(skt) must have a monotone
likelihood ratio (MLR); that is, it is required that for any t1 > t2, the likelihood
ratio f(skt1) / f(skt2) is a nondecreasing function of sk. MLR implies that the
higher the observed number-correct score, the more likely it will be that the true
level of functioning is high too. Second, the condition of monotonic loss must
hold; that is, there must be an ordering of the actions such that for each pair of
adjacent actions the loss functions possess at most one point of intersection.

In our example the binomial density function is chosen as the psychometric
model f(skt). Since the binomial model belongs to the monotone likelihood ratio
family (Ferguson, 1967, Chap. 5), it then follows that the condition of MLR is
satisfied. Furthermore, by choosing l00 = l11 = 0 and assuming positive values for
l01 and l10, it follows that for each pair of adjacent actions the loss functions don’t
possess a point of intersection. Hence, it follows immediately that the condition of
monotonic loss is also satisfied at each stage of sampling k.

8 Optimizing rules for the sequential mastery
problem

In this section, it will be shown how optimal rules for SMT can be derived using
the framework of minimax sequential decision theory. Doing so, given an observed
item response vector (x1,...,xk), first the minimax principle will be applied to the
fixed-length mastery problem by determining which of the maximum expected
losses associated with the two classification actions a0(x1,...,xk) or a1(x1,...,xk) is
the smallest. Next, applying the minimax principle again, optimal rules for the
sequential mastery problem are derived at each stage of sampling k by comparing
this quantity with the maximum expected loss associated with action a2(x1,...,xk)
(i.e., continuing sampling).

8.1 Applying the minimax principle to the fixed-length mastery
problem

Given X1 = x1,...,Xk = xk, as noted before, the minimax decision rule for the fixed-
length mastery problem can be found by minimizing the maximum expected losses
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associated with the two classification actions a0(x1,...,xk) and a1(x1,...,xk). It is
assumed that there exists a cutting score on Sk, say sc(k) (0 ≤ sc(k) ≤ k), such that
mastery is declared when sk ≥ sc(k) and that nonmastery is declared otherwise. Let
y = 0,1,...,k represent all possible values the number-correct score sk can take after
having observed k item responses, assuming the conditions of monotonicity are
satisfied, it then can easily be verified from Table 1 and Equation 1 that mastery
(a1(x1,...,xk)) is declared when the maximum loss associated with the mastery
decision is smaller than the maximum loss associated with the nonmastery
decision, or, equivalently, when number-correct score sk is such that
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and that nonmastery (a0(x1,...,xk)) is declared otherwise. Since the cumulative
binomial distribution function is decreasing in t, it follows that the inequality in
(2) can be written as:
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Rearranging terms, it follows that mastery is declared when number-correct
score sk is such that:
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1   <  1/(1+R),                                                                             (4)

where R denotes the loss ratio (i.e., R = l10/l01). If the inequality in (4) is not
satisfied, nonmastery is declared.

8.2 Derivation of minimax sequential rules

Let dk(x1,...,xk) denote the action a0(x1,...,xk) or a1(x1,...,xk) yielding the minimum
of the maximum expected losses associated with these two classification actions,
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and let the maximum expected loss associated with this minimum be denoted as
Vk(x1,...,xk). These notations can also be generalized to the situation that no
observations have been taken yet; that is, d0(x0) denotes the action a0(x0) or a1(x0)
which yields the smallest of the maximum expected losses associated with these
two actions, and V0(x0) denotes the smallest maximum expected loss associated
with d0(x0).

Minimax sequential rules can now be found by using the following backward
induction computational scheme: First, the minimax sequential rule at the final
stage of sampling n is computed. Since the continuing sampling option is not
available at this stage of sampling, it follows immediately that the minimax
sequential rule is given by dn(x1,...,xn); its associated maximum expected loss is
given by Vn(x1,...,xn).

Subsequently, the minimax sequential rule at the next to last stage of sampling
(n-1) is computed by comparing Vn-1(x1,...,xn-1) with the maximum expected loss
associated with action a2(x1,...,xn-1) (i.e., continuing sampling). As noted before,
the maximum expected loss associated with taking one more observation, given a
response pattern (x1,...,xn-1), is computed by averaging the maximum expected
losses associated with each of the possible future decision outcomes at the final
stage n relative to the probability of observing those outcomes (i.e., backward
induction).

Let P(Xn = xn  x1,...,xn-1) denote the distribution of Xn, given the observed
item response vector (x1,...,xn-1), then, the maximum expected loss associated with
taking one more observation after (n-1) observations have been taken,
E[Vn(x1,...,xn-1, Xn)  x1,...,xn-1], is computed as follows:

1
[ ( ,..., , ) ,..., ] ( ,..., ) ( ,..., ),1 1 1 1 1 1 1

0

xn
E V x x X x x V x x P X x x xn n n n n n n n n

xn

=
= =∑− − −

=
(5)

Generally, P(Xk = xk  x1,...,xk-1) is called the posterior predictive distribution
of Xk at stage (k-1) of sampling. It will be indicated later on how this conditional
distribution can be computed.

Given a response pattern (x1,...,xn-1), the minimax sequential rule at stage (n-1)
of sampling is now given by: Take one more observation if E[Vn(x1,...,xn-1, Xn) 
x1,...,xn-1] is smaller than
Vn-1(x1,...,xn-1), and take action dn-1(x1,...,xn-1) otherwise. If E[Vn(x1,...,xn-1, Xn) 
x1,...,xn-1] and Vn-1(x1,...,xn-1) are equal to each other, it does not matter whether or
not the decision-maker takes one more observation.

To compute the maximum expected loss associated with the continuing
sampling option, it is convenient to introduce the risk at each stage of sampling k,
which will be denoted as Rk(x1,...,xk). Let the risk at stage n of sampling be defined
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as Vn(x1,...,xn). Generally, given a response pattern (x1,...,xk-1), the risk at stage (k-
1) is then computed inductively as a function of the risk at stage k as follows:

Rk-1(x1,...,xk-1) = min{Vk-1(x1,...,xk-1), E[Rk(x1,...,xk-1, Xk)  x1,...,xk-1]}. (6)

The maximum expected loss associated with taking one more observation after
(n-2) observations, E[Rn-1(x1,...,xn-2, Xn-1)  x1,...,xn-2], can then be computed as the
expected risk at stage (n-1) as follows:

[ ( ,..., , ) ,..., ]1 1 2 1 1 2E R x x X x xn n n n =− − − −

11
( ,..., ) ( ,..., ).1 1 1 1 1 1 2

01

xn
R x x P X x x xn n n n n

xn

=−
=∑ − − − − −

=−
(7)

Given (x1,...,xn-2), the minimax sequential rule at stage (n-2) of sampling is
now given by: Take one more observation if E[Rn-1(x1,...,xn-2, Xn-1)  x1,...,xn-2] is
smaller than Vn-2(x1,...,xn-2); otherwise, action dn-2(x1,...,xn-2) is taken. In the case of
equality between Vn-2(x1,...,xn-2) and E[Rn-1(x1,...,xn-2, Xn-1)  x1,...,xn-2], it does not
matter again whether or not the decision-maker takes one more observation.

Following the same computational backward scheme as in determining the
minimax sequential rules at stages (n-1) and (n-2), the minimax sequential rules at
stages (n-3),...,1,0 are computed. The minimax sequential rule at stage 0 denotes
the decision whether or not to take at least one observation.

9 Computation of posterior predictive probabilities

As can be seen from (5) and (7), the posterior predictive distribution P(Xk = xk 
x1,...,xk-1) is needed for computing the maximum expected loss associated with
taking one more observation at stage (k-1) of sampling. From Bayes’ theorem, it
follows that:

P(Xk = xk x1,...,xk-1) = P(X1 = x1,...,Xk = xk)/P(X1 = x1,...,Xk-1 = xk-1)             (8)

For the binomial distribution as the psychometric model involved and
assuming the beta distribution B(α, β) as prior with parameters α and β (α, β > 0),
it is known (e.g., Keats & Lord, 1962) that the unconditional distribution of
(X1,...,Xk) is equal to:

P(X1 = x1,...,Xk = xk) = [Γ(α+β)Γ(α+sk)Γ(β+k-sk)]/[Γ(α)Γ(β)Γ(α+β+k)] (9)



38 Hans J. Vos

where Γ is the usual gamma function. From (8)-(9) it then follows that the
posterior predictive distribution of Xk, given a response pattern (x1,...,xk-1), can be
written as:

P(Xk=xkx1,...,xk-1)=[Γ(α+sk)Γ(β+k-sk)Γ(α+β+k-1)]/[Γ(α+sk-1)Γ(β+k-1-sk-1)Γ(α+β+k)].

        (10)

Using the well-known identity Γ(j+1) = jΓ(j) and the fact that sk = sk-1 and sk = sk-

1+1 for xk = 0 and 1, respectively, it follows from (10) that:

P(Xk = xk  x1,...,xk-1) = 
( 1 ) /( 1)             if 01
( ) /( 1)                             if 1.1

k s k xk k
s k xk k

β α β
α α β

+ − − + + − = −
 + + + − =−

(11)

10 Illustration of computing the appropriate action

To illustrate the computation of the appropriate action (i.e., mastery, nonmastery,
continuation) outlined above, suppose that the maximum test length is 25 (i.e., n =
25). First, the appropriate classification decision (i.e., declare mastery or
nonmastery) and its associated maximum expected loss at the final stage of testing,
d25(x1,…,x25) and V25(x1,…,x25), are then computed for all possible values of s25

(i.e., s25 = 0,…,25). More specifically, mastery is declared for those values of s25

for which the inequality in (4) holds, while nonmastery is declared otherwise.
Likewise, the appropriate classification decision and its associated maximum

expected loss are computed after 24 items have been administered (i.e.,
d24(x1,…,x24) and V24(x1,…,x24)) for s24 = 0,…,24. Next, the maximum expected
loss associated with administering one more random item after 24 items have been
administered, E[R25(x1,…,x24, X25  x1,…,x24], is computed using (5) and (11) for
s24 = 0,…,24. Another random item is administered if these values are smaller than
V24(x1,…,x24), and otherwise classification decision d24(x1,…,x24) is taken.

For computing the appropriate action after 23 items have been administered, in
addition to computing d23(x1,…,x23) and V23(x1,…,x23) for s23 = 0,…,23, the risk
R24(x1,…,x24) at stage 24 of testing is computed using (6) for s24 = 0,…,24. The
maximum expected loss associated with administering one more random item after
23 items have been administered, E[R24(x1,…,x23, X24  x1,…,x23], can then be
computed as the expected risk using (7) and (11) for s23 = 0,…23. One more
random item is now administered if these values are smaller than V23(x1,…,x23);
otherwise, classification decision d23(x1,…,x23) is taken. Similarly, the appropriate
action is determined at stage 22 until stage 0 of testing.
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11 Determination of the least favorable prior

To be able to compute the posterior predictive distribution P(Xk = xk  x1,...,xk-1),
the form of the assumed beta prior B(α, β) must be specified more specifically,
that is, the numerical values of its parameters α and β (α, β > 0) must be
determined. In the present paper the least favorable prior will be taken for B(α, β),
as will be shown in this section, which results if for β the value 1 is taken and if α
is taken sufficiently small. It should be noted, however, that other forms of the
beta prior (e.g., the uniform prior with α = β = 1) might also be considered in
computing the posterior predictive distribution.

Let ( )srpI ,  denote the incomplete beta function with parameters r and s (r, s >

0). It has been known for some time that

( ) ( )∑
=

+−=−−




n

mx
mnmpIxnpxp

x

n
.1,1 (12)

Hence, the inequality in (4) can be written as:

 ( )1, +− kskksctI   <  1/(1+R).     (13)

Within the framework of Bayesian decision theory, given a response pattern
(x1,...,xk), it can easily be verified from Table 1 that mastery is declared for the
fixed-length mastery problem if number-correct score sk is such that

(l10+ke)P(T ≤ tcsk) + (ke)P(T > tcsk)  <  (ke)P(T ≤ tcsk) + (l01+ke)P(T > tcsk), (14)

and that nonmastery is declared otherwise. Rearranging terms, it can easily be
verified from (14) that mastery is declared if

P(T ≤ tcsk)  <  1/(1+R), (15)

and that nonmastery is declared otherwise.
Assuming a beta prior, it follows from an application of Bayes’ theorem that

under the assumed binomial model from (1), the posterior distribution of T will be
a member of the beta family again (the conjugacy property, see, e.g., Lehmann,
1959). In fact, if the beta function

B(α, β) with parameters α and β (α, β > 0) is chosen as the prior distribution
and student’s observed number-correct score is sk from a test of length k, then the
posterior distribution of T is ( )βα +−+ kskkstI , .

Hence, assuming a beta prior, it follows from (15) that mastery is declared if:
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( )βα +−+ kskksctI ,   <  1/(1+R), (16)

and that nonmastery is declared otherwise.
Thus, comparing (13) and (16) with each other, it can be seen that the least

favorable prior for the minimax solution is given by a beta prior B(α, β) with β = 1
and α sufficiently small. It should be noted that the parameter α > 0 can not be
chosen equal to zero, because otherwise the prior distribution for T should be
improper; that is, the prior does not integrate to 1 but to infinity.

12 Simulation of different strategies for variable-length
mastery testing

In a Monte Carlo simulation the minimax sequential strategy will be compared
with other existing approaches to both sequential and adaptive mastery testing.
More specifically, four variable-length mastery testing strategies described in
detail in Kingsbury and Weiss (1983) (see also, Weiss & Kingsbury, 1984) will be
used here as a comparison in terms of average test length (i.e., the number of items
that must be administered on the average before a mastery/nonmastery decision is
made), correspondence between the simulated students’ true mastery status and
his/her estimated mastery status as indexed by the Loevinger’s coefficient H, and
coefficient H as a function of average test length.

12.1 Description of the testing strategies used for comparison

The first comparison will be made with a conventional fixed-length test (CT) in
which student performance was recorded as proportion of correct answers
(CT/PC). The student was declared a master for answering 60% or more items
correctly after completion of the test, whereas nonmastery was declared otherwise.

In order to determine whether the scoring method possibly accounts for
differences between a Bayesian-scored AMT algorithm and the CT/PC procedure,
the second comparison will be made with a conventional test where item responses
were converted by Owen's Bayesian scoring procedure (CT/B) to a latent ability on
an IRT-metric, assuming a standard normal prior N(0,1). Mastery was declared if
the final posterior estimate of student's latent ability was higher than the
prespecified cut-off point on the latent IRT-metric corresponding to 60% correct;
otherwise nonmastery was declared. The cut-off point on the latent IRT-metric was
hereby determined by transforming the proportion-correct of 0.6 through the use of
the test response function (TRF), that is, the mean of the item response functions
for all items in the pool.
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The third comparison will be made with Wald’s SPRT procedure. The limits of
the indifference region in which sampling will continue were set at proportion-
correct values p0 and p1 of 0.5 and 0.7, respectively, whereas values of Type I and
Type II error rates (i.e., α and β) were each set equal to 0.1. According to the
SPRT procedure, after k items have been administered with sk of them being
answered correctly, mastery was now declared if the likelihood ratio L(x1,…,xk

p1) / L(x1,…,xk p0) = ])5.0()5.0(/)3.0()7.0[( kskkskskks −−  was smaller than α/(1-

β), nonmastery if this likelihood ratio was larger than (1-α)/β, and otherwise
sampling was continued. For those students who could not be classified as either a
master or nonmaster before the item pool was exhausted, a classification decision
was made in the same way as in the CT/PC procedure, using a mastery proportion-
correct value of 0.6.

The fourth comparison will be made with an AMT strategy using a maximum
information item selection strategy with a symmetric Bayesian confidence interval
of 90% and using Owen's Bayesian scoring algorithm for a point estimation of
student's latent ability on an IRT-metric. Like in the CT/B procedure, a standard
normal prior N(0,1) was assumed for the Bayesian scoring of the adaptive test.
Also, like in the CT/B procedure, the prespecified cut-off points on the latent IRT-
metric (i.e., the mastery levels) in each of the 100-item pools corresponding to
60% correct were determined from the TRF.

In order to make a fair comparison of the minimax sequential strategy with the
four strategies described above, the criterion level tc was set equal to 0.6.
Furthermore, the losses l01 and l10 associated with the incorrect classification
decisions were assumed to be equal corresponding to the assumption of equal error
rates in Wald's SPRT procedure. On a scale in which one unit corresponded to the
cost of administering one item (i.e., e = 1), l01 and l10 were each set equal to 200
reflecting the fact that costs for administering another random item were assumed
to be rather small relative to the costs associated with incorrect classification
decisions. Finally, the parameter α of the beta distribution B(α,1) as least
favorable prior was set equal to 10-9.

Using the backward induction computational scheme discussed earlier, for
given maximum test length n, a computer program called MINIMAX was
developed to determine the appropriate action (i.e., nonmastery, mastery,
continuing sampling) for the minimax sequential strategy at each stage of sampling
k for different number-correct score sk. The recurrent relation:
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 = 1, was hereby used for

computing the binomial coefficients in (4). A copy of the program MINIMAX is
available from the author upon request.
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12.2 Item pools

In the simulation study by Kingsbury and Weiss (1983), the simulations were
conducted using four 100-item pools generated to reflect different types of item
pools.

Pool 1 (uniform pool) consisted of items that were perfect replications of each
other. More specifically, each item had discrimination a of 1, difficulty b of 0, and
lower asymptote c (pseudo-guessing level) of 0.2. This item pool reflected the
SPRT procedure’s assumption that all items have equal difficulty. As noted before,
this assumption also reflects the choice of the binomial distribution for modeling
response behavior in the minimax sequential procedure.

Pool 2 (b-variable pool) varied from the uniform pool only in that the
difficulties b differed across a range of values and reflected the 1-parameter IRT
model (i.e., Rasch model).

Pool 3 (a- and b-variable pool) varied from the b-variable pool only in that the
discriminations a differed across a range of values and was designed to simulate
the 2-parameter IRT model.

Pool 4 (a-, b-, and c-variable pool) varied from the a- and b-variable pool only
in that the lower asymptotes c were allowed to spread across a range of values and
simulated the 3-parameter IRT model.

For a more detailed description of the four different item pools, refer to
Kingsbury and Weiss (1983).

12.3 Maximum test lengths

Conventional tests (CTs) of three different lengths (10, 25, and 50 items) were
randomly drawn from each of the four item pools. Doing so, the 10-item test
served as the first portion of the 25-item test and the 25-item test in turn served as
the first portion of the 50-item test. These 12 CTs served as subpools from which
the SPRT, AMT, and minimax sequential procedures drew items during the
simulations.

It is important to notice that this random sampling from a larger domain of
items implies that the binomial model assumed in both Wald’s SPRT and the
minimax sequential procedure holds. Thus, not only for the uniform pool but also
for the b-variable, a- and b-variable, and a-, b-, and c-variable pool, the assumed
binomial model holds in these two testing strategies.

12.4 Item response generation

Item responses for 500 simulated students, drawn from a N(0,1) distribution, were
generated for each item in each of the four item pools. For known ability of the
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simulated student and given item parameters, first the probability of a correct
answer was calculated using the 3-PL model. Next, this probability was compared
with a random number drawn from a uniform distribution in the range from 0 to 1.
The item administered to the simulated student was scored correct and incorrect if
this randomly selected number was less and greater than the probability of a
correct answer, respectively.

Furthermore, a simulated student was supposed to be a "true" master if his/her
ability used to generate the item responses was higher than a prespecified cut-off
point on the N(0,1) ability metric. Since a value of 0.6 on the proportion-correct
metric of each of the four item pools corresponded after conversion with a value of
0 on the N(0,1) ability metric, the cut-off point on the N(0,1) ability metric was set
equal to 0.

13 Results of the Monte Carlo simulation

In this section, the results of the Monte Carlo simulations will be compared for the
different variable-length mastery testing strategies in terms of average test length,
correspondence with true mastery status (i.e., classification accuracy), and
correspondence as a function of average test length (i.e., efficiency of testing
strategy).

13.1 Average test lengths

Table 2 shows the average number of items required by each of the variable-length
mastery testing strategies before a mastery/nonmastery decision can be made. The
minimax sequential testing strategy is hereby denoted as MINI.

As can be seen from Table 2, the MINI strategy resulted in considerably
average test length reductions for each combination of item pool and maximum
test length (MTL). Table 2 also shows that, except for the a-, b-, and c-variable
pool by the SPRT strategy at the 50-item MTL level, the MINI procedure resulted
in a greater reduction of average test lengths than the conventional, AMT, and
SPRT strategies for each item pool at all MTL levels. Finally, like under the other
strategies, it can be inferred from Table 2 that for each item pool the reduction in
average test length increased under the MINI strategy with increasing MTL. For
the uniform pool, the average test length was reduced by 36%, 54%, and 71% for
the 10-item MTL, 25-item MTL, and 50-item MTL, respectively. For the b-
variable pool, a- and b-variable pool, and a-, b-, and c-variable pool, these
percentages in average test length reduction were (25%; 44%; 61%), (41%; 57%;
68%), and (28%; 50%; 65%), respectively. Hence, under the MINI strategy, the
greatest reductions in average test length were achieved by the a- and b-variable
pool and uniform pool.
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Table 2: Mean number of items administered to each simulee for four mastery testing
strategies using each item pool, at three maximum test lengths.

     _______________________________________________________________________________

                                                                                       Maximum test length
        Item pool and                                                       ________________________________

       testing strategy                               10                  25   50

     _______________________________________________________________________________

         Uniform pool

    Conventional             10.00 25.00 50.00
    AMT 9.03 15.99 23.00
    SPRT 8.75 13.12 15.39
    MINI 6.41 11.47 14.49

           b-variable pool

    Conventional             10.00 25.00 50.00
AMT 9.43 18.09 27.17

    SPRT 9.62 16.79 21.41
    MINI 7.55 14.08 19.48

          a- and b-variable pool

    Conventional             10.00 25.00 50.00
    AMT 8.55 15.78 24.07
    SPRT 9.41 15.78 18.55
    MINI 5.86 10.86 15.96

          a-, b-, and c-variable pool

    Conventional              10.00 25.00 50.00
    AMT 8.73 16.35 23.39
    SPRT 8.62 13.42 15.70
    MINI 7.18 12.61 17.27
____________________________________________________________________________________

13.2 Classification accuracy

Kingsbury and Weiss (1983) and Weiss and Kingsbury (1984) used phi
correlations between true classification status (i.e., true master or true nonmaster)
and estimated classification status (i.e., declaring mastery or nonmastery) as
indicators of the quality/validity of the classification decisions. Therefore, these
authors denoted the phi correlations as measures of classification accuracy.
However, the phi coefficient is not appropriate for the assessment of classification
accuracy. The reason is that phi is sensitive to unequal proportions of true and
declared masters (see, Lord & Novick, 1968, sect. 15.9). Van der Linden and
Mellenbergh (1978) proposed coefficient delta for the assessment of classification
accuracy, which is not sensitive to unequal proportions of true and declared
masters. They showed that delta reduces to the well-known Loevinger’s coefficient
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H if the threshold loss function is: l00 = l11 = 0, l01 = l10. Since the losses for the
correct classification decisions were assumed to be equal to zero and the losses for
the incorrect classification decisions were both set equal to 200, it follows thus
that coefficient H applies to our simulation study. Coefficient H is defined as
phi/phi(max), where phi(max) is the maximum of phi given the marginal
distributions of the 2 x 2 table. Although coefficient delta is not always in the
interval from 0 to 1, however, it has been shown (van der Linden & Mellenbergh,
1978) that coefficient H is in this interval. A value of 0 signifies that the test is
worthless, and a value of 1 signifies that the test is perfect for the decision
situation.

Table 3: Loevinger’s coefficients H between observed mastery status and true mastery
status for each mastery testing strategy, using each type of item pool, at three maximum

test lengths.

   _________________________________________________________________________________

                                                                                                 Maximum test length
      Item pool and                                                        ________________________________

     testing strategy                   10 25 50
   _________________________________________________________________________________

          Uniform pool

 CT/PC 0.862 0.901 0.923
  CT/B 0.813 0.887 0.919
  AMT 0.873 0.912 0.920
  SPRT 0.856 0.908 0.916
  MINI 0.612 0.824 0.721

           b-variable pool

  CT/PC 0.614 0.722 0.837
  CT/B 0.609 0.691 0.848
  AMT 0.649 0.749 0.879
  SPRT 0.607 0.698 0.788
  MINI 0.578 0.709 0.689

           a- and b-variable pool

 CT/PC 0.691 0.801 0.832
  CT/B 0.696 0.799 0.834
  AMT 0.691 0.803 0.829
  SPRT 0.683 0.789 0.801
  MINI 0.671 0.765 0.792

         a-, b-, and c-variable pool

  CT/PC 0.389 0.781 0.841
  CT/B 0.413 0.817 0.889
  AMT 0.408 0.809 0.878
  SPRT 0.378 0.689 0.678
  MINI 0.748 0.892 0.948
   _________________________________________________________________________________
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Table 3 shows Loevinger’s coefficients H for the present simulation study. As
can be seen from Table 3, the MINI strategy resulted only for the a-, b-, and c-
variable pool in higher coefficients H than the other four testing strategies at all
MTL levels. In particular, for the 10-item MTL the coefficients H were
considerably higher. For both the b-variable and a- and b-variable pool, the other
four testing strategies generally yielded somewhat higher coefficients H. For the
uniform pool, however, the other four testing strategies yielded considerably
higher coefficients H.

Furthermore, Table 3 shows that the coefficients H for both the 25-item and
50-item MTL were higher than for the 10-item MTL by each pool type under the
MINI strategy. For both the a- and b-variable pool and a-, b-, and c-variable pool,
under the MINI strategy, the 50-item MTL yielded higher coefficients H than the
25-item MTL, whereas the opposite did hold for both the uniform and b-variable
pool.

13.3 Most efficient testing strategy

Kingsbury and Weiss (1983) depicted graphically the phi correlation as a function
of the average number of items administered by each testing strategy for each item
pool (see also Weiss and Kingsbury, 1984). In other words, they matched the
average test length on the classification accuracy. From these graphs conclusions
were derived concerning which testing strategy was most efficient. A testing
strategy was hereby said to be most efficient if it results in the combination of
highest phi correlation and shortest average test length. Following Kingsbury and
Weiss (1983) and Weiss and Kingsbury (1984), a testing strategy will be called
most efficient in this paper if it results in the combination of highest Loevinger’s
coefficient H and shortest average test length.

As is immediately clear from Tables 2 and 3, the MINI strategy was the most
efficient of all testing procedures for the (realistic) a-, b-, and c-variable pool,
since it generally yielded both the highest coefficients H and shortest average test
lengths at each MTL level. Although the SPRT strategy required at the 50-item
MTL level, on the average, somewhat fewer items for reaching a
mastery/nonmastery decision than the MINI strategy (i.e., 15.70 versus 17.27),
however, the coefficient H for the SPRT strategy was much lower compared to the
MINI strategy (i.e., 0.678 versus 0.948). For an average test length of 15.70
(interpolating from the data in Tables 2 and 3), the MINI strategy would result in a
coefficient H of 0.804.

For the a- and b-variable pool, as can been from Tables 2 and 3, the MINI
strategy yielded shorter mean test lengths than all other strategies, whereas the
coefficients H were generally somewhat lower at each MTL level. The MINI
strategy resulted in a coefficient H of 0.792 at a mean test length of 15.96 (the
longest mean test length observed at the 50-item MTL level). Interpolating data
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from Tables 2 and 3, it can easily be verified that the SPRT procedure would need
to administer 16.47 items to achieve this same coefficient H of 0.792, the AMT
procedure would need 15.07 items, the CT/B procedure would need 24.63 items,
and the CT/PC procedure would need 21.48 items. Hence, for the a- and b-variable
pool, the MINI procedure was considerably more efficient than both the CT/PC
and CT/B strategies, whereas the MINI procedure was somewhat more efficient
than the SPRT procedure. Compared to the AMT procedure, however, the MINI
procedure was somewhat less efficient.

For the b-variable pool, Tables 2 and 3 show that at the longest mean test
length observed for the MINI procedure (i.e., 19.48 at the 50-item MTL level), this
strategy resulted in a coefficient H of 0.689. Interpolating data from Tables 2 and
3, it follows that the SPRT procedure would need to administer 16.08 items to
achieve this same coefficient H of 0.689, the AMT procedure would need 12.89
items, the CT/B procedure would need 23.95 items, and the CT/PC procedure
would need 20.42 items. Hence, for the b-variable pool, it can be concluded that
the MINI procedure was considerably more efficient than the CT/B procedure and
somewhat more efficient than the CT/PC procedure. On the other hand, however,
the MINI procedure was somewhat less efficient than the SPRT procedure and
considerably less efficient than the AMT procedure.

Finally, it can be inferred from Tables 2 and 3 that the MINI strategy resulted
for the uniform pool in a coefficient H of 0.721 at the longest mean test length
observed (i.e., 14.49 at the 50-item MTL level). It follows immediately from
Tables 2 and 3 that each of the four other testing strategies would need to
administer less than 10 items to achieve this same coefficient H of 0.721. Hence,
for the (unrealistic) uniform pool, it can be concluded that the MINI procedure is
considerably less efficient than the four other testing strategies.

14 Discussion

Optimal rules for the sequential mastery problem (nonmastery, mastery, and to
continue sampling) were derived using the framework of minimax sequential
decision theory. The binomial distribution was assumed for modeling response
behavior, whereas threshold loss was adopted for the loss function involved. The
least favorable prior, used in the present paper for computing the posterior
predictive distributions, turned out to be the beta distribution with parameter β
equal to 1 and parameter α sufficiently small.

In a Monte Carlo simulation, the minimax sequential procedure (MINI) was
compared with other procedures that exist for both sequential and adaptive mastery
testing in the literature. Maximum test length (MTL) varied from 10 to 50 items,
and different types of item pools were considered by changing the values of the
item parameters.
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The results of the simulation study indicated that, compared to the other
testing strategies examined in the literature, the MINI strategy was most efficient
(i.e., combination of highest Loevinger’s coefficient H between true and estimated
mastery status and shortest average test length) for item pools reflecting the
(realistic) 3 PL-model at each MTL level. Also, except for the AMT strategy, the
MINI strategy turned out to be most efficient for item pools reflecting the 2 PL-
model at each MTL level. For item pools reflecting the 1 PL-model (i.e., the Rasch
model), the MINI strategy appeared to be more efficient than the two conventional
fixed-length methods (i.e., employing proportion correct and a Bayesian scoring
method for making mastery/nonmastery decisions) but less efficient than both the
AMT and SPRT procedure at each MTL level. For the (unrealistic) uniform item
pools, however, it turned out that the MINI strategy was less efficient than the
other testing strategies at each MTL level.

It is important to notice, however, that the MINI strategy is especially
appropriate when costs of testing can be assumed to be quite large. For instance,
when testlets rather than single items are considered. Also, the MINI strategy
might be appropriate in psychodiagnostics. Suppose that a new treatment (e.g.,
cognitive-analytic therapy) must be tested on patients suffering from some mental
health problem (e.g., anorexia nervosa). Each time after having exposed a patient
to the new treatment, it is desired to make a decision concerning the
effectiveness/ineffectiveness of the new treatment or testing another patient. In
such clinical situations, costs of testing generally are quite large and the MINI
approach might be considered as an alternative to other testing strategies, such as
SPRT, AMT, or conventional fixed-length tests.

An issue that still deserves some attention is why in the present paper,
somewhat counter to the current trend in applied measurement, a random rather
than IRT-based adaptive item selection procedure is preferred. As noted before,
IRT-based item selection strategies assume that a calibrated pool of items exists
which differ in their particular characteristics (i.e., levels of difficulty and
discrimination). For random item selection strategies, such as Wald's SPRT
procedure and the minimax sequential procedure advocated in this paper, however,
the existence of a pool of parallel items only is required. Such pools of parallel
items often are easier to construct than pools of items, which do differ in their IRT
characteristics.

In case a calibrated pool of items does exist, however, an IRT-based adaptive
strategy that selects items for administration based on their particular
characteristics is preferred rather than to randomly select items from a pool. A
promising approach, in which the strong point of the minimax and Bayesian
sequential procedures, that is, taking cost per observation explicitly into account,
is combined with an IRT-based adaptive item selection strategy might be the
following. The item to be administered next is the one that maximizes information
or minimizes posterior variance at student's last ability estimate on an IRT-metric.
At each stage of sampling, the action declaring mastery, declaring nonmastery, or
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to continue sampling is then chosen which minimizes the posterior or maximum
expected losses associated with all possible decision rules (see also Vos & Glas,
2000).

A final note is appropriate. Following the same line of reasoning as in the
present paper, optimal rules derived here can easily be generalized to the situation
where three or more mutually exclusive classification categories can be
distinguished. In Weiss and Kingsbury (1984), it is indicated how the AMT
procedure can be employed in the context of allocating students to more than two
grade classes (i.e., adaptive grading test). Spray (1993) has shown how a
generalization of Wald’s SPRT procedure (i.e., Armitage’s (1950) combination
procedure) can be applied to multiple categories, whereas Bayesian sequential
decision theory is applied in Vos (1999) to SMT in case the three classification
decisions declaring nonmastery, partial mastery, and mastery are open to the
decision-maker (see also Smith & Lewis, 1995).
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