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Abstract 

Nearly all simulation techniques have one big disadvantage in common: 
oversimplification, leading to unrealistic results. And nearly all simulation 
techniques have one big advantage in common: oversimplification, which is 
the only way to express a theoretical model in clear terms. The 
oversimplification in our simulation model consists in assuming two 
interacting partners whose actions/reactions are determined by only two sets 
of parameters: 1. a matrix of reaction probabilities which is updated 
according to the subjective evaluation of each reaction of the partner to the 
actor’s behaviour at each interaction, and 2. a payoff matrix, reflecting each 
partner’s subjective evaluation for each pair of action/reaction, which 
remains stable over a longer sequence of interactions. Applications of this 
model to several problem areas, such as socialization agents, game theory 
approaches, and Ant Colony Optimization in previous publications of the 
authors, have shown some practical results. Here, we want to focus on three 
paradigms which we believe can be deducted from our work: 1. The law of 
sociodynamics: Social systems whose organization is similar to the model 
conditions formulated above, tend to a decrease in entropy as they get older, 
in contrast to physical systems, which seem to do the opposite. 2. Cultural 
values prevail over individual behavioural dispositions: We believe to have 
found an argument that social systems with properties similar to our model 
assumptions are likely to provide individuals with behavioural dispositions 
which depend a lot more on the (culturally more stable) values attributed to 
behaviour than on initial behavioural dispositions, reflected in reaction 
probabilities. 

And 3. The slower the learning process, the better the results. Optimal 
solutions to typical dilemma situations such as the iterated prisoner’s 
dilemma are found more frequently when individuals show “silly” 
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behaviour, i.e. the rate at which they change their behavioural dispositions 
is low, whereas a quick learning rate results more often in sub-optimal 
results for both partners.  

1 How it all started: Peter’s story 

In a therapeutic institution we came across the following situation: A 33-year old 
man, whom we will call “Peter”, and who is called “the boy” by his parents, is 
brought to the institution by the police. The police had been called by the 72-year 
old father of “the boy”, after a violent attack of this “boy” against his mother. 
“The boy” had taken drugs and had attacked his mother for her attempt of taking 
away the drugs from him. In the therapeutic setting, we see “the boy” together with 
his father, his mother and two therapists. He shows an extremely cooperative 
behaviour, repeating again and again how much he regrets having caused his 
beloved parents so much trouble. He does not really understand how all this could 
have happened. And he is willing to work very hard, with the help of the 
therapists, to improve his behaviour, so that the otherwise so harmonious family 
life can be re-established. His father says that he does not understand either how 
these terrible things can have happened. He has spent all his life trying to provide 
a solid basis for a well-functioning family. But, naturally, when the son attacks the 
mother violently, and when the father, with his 72 years of age, does not have the 
physical strength to protect his wife against  their son’s attacks, there just isn’t 
anything else he could possibly do than call the police. At this moment, the mother 
takes a deep breath and gets ready to say something. But the father bends forward 
and puts his right hand on her left hand, which transforms her attempt to intervene 
into nothing but a deep sigh.  

In the therapist’s protocol, we read a very optimistic statement about the 
prognosis of this case: the whole family is committed to find a cooperative 
solution of the problem. The compliance of the client is very high, and during a 
supervision session, the two therapists express high motivation to work with this 
client and his family. At this point, the supervisor of the two therapists, who had 
observed the scene just described through a one-way mirror and also videotaped it, 
got in contact with the authors. He told us about a funny feeling he had during the 
whole situation. Somehow, he could not get rid of the idea that “the boy” played 
some kind of game with his parents, and the two therapists joined in, without 
being very aware of it. They also did not want to look at it from such a 
perspective, even after a closer look at the client’s records revealed that almost 
exactly the same chain of events had happened three months before: a violent 
attack on his mother, police intervention, ending by a transfer to (another) 
therapeutic institution. And an investigation at this other institution revealed 
another previous episode of almost exactly the same kind, another three months 
before that. But still, the therapists were reluctant to accept the idea of a game, 
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following a certain set of rules, being played here. Therefore, the question with 
which we were confronted, was: could there be any way to make the implicit rules 
of a game plausible to the persons involved in it?   

2 The model: Its basic elements 

There are three basic elements in our model which need to be explained: 
 
1. A matrix of values which actors attribute to behavioural sequences. 

Following the terminology of game theory, we call this matrix the Payoff 
Matrix. Its rows represent the strategies (behaviours) of the actor, or the 
ego, and its columns represent the strategies (behaviours) of his partner, 
opponent, or the alter. The entries in the cells represent the amount of 
benefit which a person receives (or interprets) when the partner chooses the 
column strategy after the ego had chosen the row strategy. 

2. A matrix of probabilities with which the actor reacts to the partner’s  
strategy. Following the terminology of Markov chains, we call this matrix 
the Transition Matrix. Its rows represent the strategies (behaviours) of the 
partner, or the alter, and its columns represent the strategies of the ego. The 
entries in the cells represent the probabilities with which the actor, or the 
ego, will react to the strategy of the alter, as represented in a row of the 
matrix, by his own strategy, as represented in a column of the matrix. This 
means that the cell entries will be numbers between 0 and 1 and add up to 1 
in each row. But unlike (homogeneous) Markov processes, which assume 
this transition matrix to remain stable over time, we assume that at each 
interaction, the probabilities in this matrix change, depending on ego’s 
evaluation of how the partner has reacted. The amount of change is 
determined by the entries in the payoff matrix. The details of this change 
will be described later. 

3. The final distribution, showing the percentages with which, in a large 
number of simulations (interaction stories), every combination of strategies 
(action-reaction pair) has remained after a long series of interactions. In 
other words, this distribution gives, for each action-reaction pair, the 
probability that it occurs in the stable end state resulting from a long 
interaction process (as to the stability of this end state, cf. the remarks 
below). 
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4 What the model does: About the nature of virtual 
interaction partners 

Modelling human interactions has led to relatively complex simulation algorithms 
in the past, as outlined, e.g., by authors like Schmidt  (2000), Mosler (2000), and 
many others. But in our model, we are trying to look at the possible outcomes of a 
two-person interaction in which two partners have a limited spectrum of actions to 
choose from, information about the spectrum of actions of the other, and a given 
matrix of preferences for each action-reaction-pair. They have no information 
about what the other partner will do next, and they have no direct influence on the 
other. But they will change the probabilities for their own behaviour according to 
their preferences: i.e. according to how much they like the partner’s reaction to 
their own preceding action. This procedure basically follows the paradigm of 
psychological learning theory: In psychological learning theory, it is either 
behaviours (in our terminology: “actions”, or “strategies”) that are reinforced, i.e. 
whose probabilities increase, or, as in discriminative learning, action-reaction 
pairs. In our approach, the more flexible model of discriminative learning is used, 
thus leading to increases in conditional probabilities rather than unconditional 
probabilities. In Eder, Gutjahr, and Neuwirth (2001), we have tried to show that 
even a model as simple as this one can make sense in terms of counselling: it can 
help us understand the process of mutual reinforcement of two partners, leading to 
sometimes unexpected results. The example discussed there was the situation of a 
smoking child, and an attempt to figure out in which way even a slight change in 
preferences of the actors will be likely to produce quite remarkable effects on the 
probability of smoking. In Gutjahr and Eder (2001), we have tried to show that our 
model can also be used to understand some properties of Ant Colony 
Optimization: a heuristic optimization technique for computer-based solutions of 
decision support problems in several areas of business, management and 
technology; see, e.g., Dorigo and di Caro (1999). This optimization paradigm ist 
derived from insights into the behaviour of “society-building insects”, obtained by 
biologists, and is therefore closely related to learning in social contexts. In this 
paper, we would like to point out some properties of our model which we believe 
can be used to make a few general statements about the organization of dyadic 
interaction systems.  

A more careful description of the model has been given in the contributions 
cited above. Here we want give only a short review of how the model is 
functioning (Eder, Gutjahr, and Neuwirth; 2001). 

In our model we have two interacting partners who know absolutely nothing 
about each other and have no such thing as a "personality", a "character", or a 
"morality" of any kind. And just like the two prisoners in the well-known 
prisoner’s dilemma, they have no idea what the other one will do. And their 
decisions are not influenced by any idea of what’s good or what’s bad. The only 
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thing they know is their own part of their payoff-matrix. A knows how much he 
gets when B reacts  to A’s strategy i with B’s strategy j, for all pairs of possible 
strategies. In other words: For each possible action of  A, and for each possible 
reaction of B, A knows how much he will like or dislike it.  And the same goes 
vice versa for B. 

A starts an activity. And since he has not the slightest idea what he should do, 
he throws a coin. B does the same. A again. Now, B has the possibility of 
evaluating what has happened. He interprets his own strategy as a reaction to the 
preceding strategy of A, and A’s response to his own strategy as a sign of success 
or failure of his own strategy. 

The fact that our two actors had started with bland personalities is represented 
in their vectors of reaction probabilities, which we can call transition probabilities 
in analogy to the theory of Markov chains, although in our case, not transitions 
between states, but rather between actions are considered: For every possible 
strategy of B, A has a vector which contains the transition probabilities of reacting 
with each of his possible strategies, given the strategy of B. In the beginning, all 
these probabilities can be the same. In the simplest possible case, when we have 
only two possible actions for each actor, they are all 0.5 (the coin). When we list 
these vectors in rows, we get the transition matrix as described above.  

 Now, as we said, B interprets his strategy as a reaction to what A had done 
previously. If A had chosen strategy i first (by throwing a coin), then B will find 
the probability of reacting to A’s strategy i by choosing strategy j with the 
probability in row i and column j of his matrix of transition probabilities. 

Furthermore, B interprets A’s strategy k which follows his own strategy j as a 
reaction to this strategy j  which he just chose. The extent to which he likes or 
dislikes this reaction is represented in his payoff matrix, in line j and column k. If 
he likes the reaction – a positive value in cell (j,k) of his payoff matrix – his 
transition probability of reacting to strategy i of A with strategy j will increase, as 
a function of the value in column j and row k in the payoff matrix: First, the 
probability in row i and column j is increased by a fixed learning rate, multiplied 
by the achieved payoff; after that, the whole row i is re-normalized to a sum of 1 
by division by (1 + (learning rate)*payoff). Thus, B will be conditioned to those 
reactions that have shown to be successful for him. 

Exactly the same goes for A. In the terminology of learning theory, both actors 
mutually take the role of environment, conditioning the other one to those actions 
that rank high in the other’s payoff matrix. In this way, we avoid the drawback of 
psychological learning theory criticized by Bateson and Jackson (1964): an 
arbitrary determination of the roles of the person providing the stimuli and of the 
person responding by reactions makes their roles appear as fixed, whereas in 
reality, they alternate, resulting in a cyclic process. 

 Apparently, a lot of things can happen to the transition probabilities during a 
simulation run. Every single simulation, consisting of a number of interaction 
steps during which transition probabilities are changed, can lead to another 
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transition matrix at the end of the process. – Can it really? A little later we shall 
see that this is not quite the case.  

For the moment, let us just distinguish between two types of transition 
matrices: first, a transition matrix which allows no prognosis whatsoever about 
what the most likely reaction of an actor will be. We chose to call such a matrix an 
“entropic” matrix, and it is characterized by the same entries in each cell, each 
being 1 divided by the number of columns. And second, a matrix which gives us 
some information on what an actor will do, given a preceding action of his partner. 
We call such a matrix a “non-entropic” matrix. The least entropic transition matrix 
that we can think of is a deterministic one, containing a 1 in each row, all the other 
entries in each row being 0. Figure 1.1 gives an example of entropic matrices of 
two actors A and B, where there are 4 strategies available for A and 3 for B.  

Now the big question is: Assuming that the updating process of an initially 
entropic matrix through discriminative learning has worked for some time: is there 
anything that we can say about how an initially entropic matrix will look in the 
end, or not? Is everything possible, or can we expect an initially entropic transition 
matrix to converge to something predictable?  

It can be shown both theoretically and by repeated simulation that, no matter 
how entropic a transition matrix is in the beginning, at the end of the interaction 
story the behaviour of A and B will always be deterministic. To be precise, this is 
true if all the values in the payoff matrix are at least marginally greater than zero. 
The proof for this is straightforward.3)  

By what type of transition matrices can a deterministic behavior of both actors 
be achieved? The two matrices must have a specific relation to each other, 
effecting that each actor’s decision is completely determined by the other actor’s 
previous decision. We call a pair of matrices of this type a cyclic matrix pair.4) A 
cyclic matrix pair forces both actors to run again and again through a deterministic 
cycle of actions. This cycle can also be the trivial one, consisting of only one fixed 
action per partner.  

One might argue that the matrices in such a pair must be deterministic, i.e., 
contain only entries 0 or 1, but this is not true: Figure 1.2 shows an example of a 
cyclic matrix pair. The last row of the right matrix contains noninteger values. 
Nevertheless, the resulting behavior is still deterministic, because the last row will 
never have a chance to “play”: A will never play strategy 4, and therefore, B will 
never get a chance of using the transition probabilities in his fourth row.  

Let us summarize: No, we cannot say which combination of strategies will 
remain at the end of an interaction story. But we can say that whatever is left from 
an initially entropic pair of transition matrices at the end of an interaction story, 
will be deterministic, i.e. non-entropic, and cyclic.  
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1.1: Entropic state 
 

A →       B  → 
B       A 

↓       ↓ 
    1 2 3 4       1 2 3 

1 .25 .25 .25 .25   1 .33 .33 .33 

2 .25 .25 .25 .25   2 .33 .33 .33  

3 .25 .25 .25 .25   3 .33 .33 .33 

4 .33 .33 .33 

1.2: Cyclic state 
 

A →       B  → 
B       A 

↓       ↓ 
    1 2 3 4       1 2 3  

1 0 0 1 0   1 0 0 1 

2 1 0 0 0   2 1 0 0 

3 0 1 0 0   3 0 1 0 

        4       0.3*)    0.5*)    0.2*)
 

Cycle:  

A:1� B:3� A:2� B:1� A:3� B:2�A:1 
 

*): or any other non-integer value between 0 and 1, adding up to 1 in row 4. 

Figure 1:   Two corresponding transition matrices in an entropic state (1.1) and a cyclic 
state (1.2). 

Intuitively, the importance of the notion “cyclic matrix pair” can be illustrated 
by our introductory case report: The story of Peter gave us the impression that 
there are certain behavioural cycles which the actors “play”, without being able to 
stop the “game”. And each actor perceived himself as being completely determined 
by somebody else’s  preceding action. Nobody had a choice. But not only that: The 
behaviour repeated, leading to cycles, just as in the above example. 
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5 The law of sociodynamics 

Social systems whose organization is similar to the model conditions formulated 
above, tend to a decrease in entropy as they get “older”, i.e. the longer the 
sequence of their interactions, in contrast to physical systems, which seem to do 
the opposite. In the example in Figure 2, we look at a simulation with two 
interacting partners with three strategies each. As we have stated above, the 
process will develop uneven probability distributions in the transition matrices. If 
we use entropy as a measure for equality of distribution, we get a pattern as in 
Figure 2 (the symbols pij in the formula denote the probabilities in the transition 
matrix). Different simulations may show different slopes and different amounts of 
decrease, but a decrease can always be observed, and it mostly has the same shape 
as in Figure 2. 

In other words: the more interactive steps we see, the less balanced the 
probability distributions become: less and  less reactions become more and more 
likely, and after a while the behaviour is no more stochastic at all: to a given 
action, we have a probability of 1 for one specific reaction, and  of  0 for all the 
others. When this stage has been reached , the reaction is completely predictable. 
We also might say: The entropy of  the reaction to this considered action has 
decreased to its minimum value. This occurs for all actions the considered actor 
eventually chooses, which reduces the entropy of the overall system. We might 
express this observation as follows:  Whereas thermodynamics tell us that physical 
systems (where other laws are at work) tend towards a state of increased entropy 
(i.e. unpredictability of their states, or equal distribution of all possible states), 
when they are uninfluenced by forces outside the system, social systems do the 
opposite: "Sociodynamics" tell us that social systems tend towards a state of 
decreased entropy, predictability of their states, unequal distribution of all 
possible states, if no other influences than the mechanism of operant conditioning 
are at work. We even might call this state of decreased entropy "social order", 
depending on how generous we want to be with using that term. This social order 
is manifested by a determinism in behavioural sequences, which, however, can 
look a little neurotic at times. 

We believe to have here a formal representation of a process which is one of 
the basic questions often asked in social theory and social research: By which 
processes is it that small social systems establish social order, where one important 
aspect of social order is predictability of behaviour. The importance of our model, 
in our view, lies in the fact that it seems to show how implicit rules of behaviour 
can emerge by a mere functioning of mutual reinforcement in dyadic interactions, 
even before considering the roles of institutions, socializing agents, values, asf. 
Later in this paper, in the epilogue, we will try to show how such a general 
observation can have quite concrete consequences for  interventions in dyadic 
systems. 
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Figure 2: Entropy of reaction probabilities for 2 actors with 3 strategies each and 100 
interactions, where  entropy= ij

i j
ij pp 2log∑∑− . 

What could this mean in terms of a  sociological argument? 
Social order is one of the basic issues of authors like, e.g., Soeffner (1992). He 

states the necessity of rituals to constitute social order. But how are rituals created 
in social systems? Maybe our little simulation program provides us with one 
answer: rituals can be looked at as those behavioural routines at the end of an 
interaction story which are left over, after all other behavioural possibilities have 
been sorted out by a process of discriminative learning; a process which we have 
called the “law of sociodynamics”: Each interaction story can be seen as a process 
during which two actors mutually condition each other to a subset of behavioural 
possibilities (“strategies”, to use game theory terminology), which is contained in 
the range of possible behaviours with which the actors  have originally started 
their common history. The longer the story, the less entropic, i.e. the more 
deterministic, the interaction becomes. Every actually chosen strategy of partner A 
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will cause with a probability close to 1 one specific strategy of partner B, which 
will in turn cause another strategy of A, asf. Therefore, the result of each 
interaction story will be a more or less deterministic sequence of actions, or 
strategies, where each partner will see the cause of his own behaviour in the 
partner´s preceding behaviour. And the longer it takes, the more automatic it will 
become. Such a quasi-automatic sequence of behaviours will look very much like 
what Sociologists tend to call rituals. 

6 The impact of values as opposed to behavioural 
dispositions 

We believe to have found an argument that social systems with properties similar 
to our model assumptions are likely to provide individuals with behavioural 
dispositions which depend a lot more on values attributed to behaviour than on 
initial behavioural dispositions, reflected in reaction probabilities.  

In order to illustrate that, we refer again to the example cited above. In Eder, 
Gutjahr, and Neuwirth (2001), we have shown that a small change in the payoff 
matrix of two interacting partners can have strong effects on the distribution of 
strategies with which the partners end up after a longer interaction story (in our 
case; 100 interaction cycles). We call this distribution the “final distribution”. In 
the following (Figure 3), we compare 4 scenarios. Scenarios 1 and 2 differ by a 
rather big change in the initial transition matrix, scenarios 1 and 3 differ by a 
comparably small change in the payoff matrix. The same goes for scenarios 3 and 
4, and scenarios 2 and 4, respectively. 

 In the schematic representation of Figure 4, we just look at the distances 
(boxes) between the distributions of the final action-reaction sequences in the four 
scenarios (circles). The degree of similarity between two distributions is measured 
by computing the Euclidean distance of the two 4-dimensional frequency vectors 
(in percent). The comparison between the left two circles and the right two circles 
is a comparison between entropic and non-entropic initial transition matrices, and 
the comparison between the upper two circles and the lower two circles is a 
comparison between a pair of payoff matrices with no Nash-equilibrium5) in 
dominant strategies and another one with an equilibrium in dominant strategies. 
(In terms of the Nash solution concept of game theory, the upper case refers to a 
game where the Nash equilibrum is not unique, while it is unique in the lower 
case.) 

This set of comparisons shows quite clearly: When the payoff matrices do not 
have an equilibrium in dominant strategies, then the initial transition matrices 
make a lot of difference for the final distributions. If we try to translate this into an 
interaction situation, we might  say: when the payoff situation does not make a 
clear distinction between different strategies, then the outcome of an interaction 
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story will depend quite strongly on behavioural dispositions, as reflected in initial 
transition matrices. But we also can see in Figure 4: as soon as there is an 
equilibrium in dominant strategies in our payoff matrices (lower circles), then the 
difference between an entropic and a non-entropic initial transition matrix has a 
much smaller effect on the final distributions than a difference between a situation 
with an equilibrium vs. a situation without. (Again: we use the term “equilibrium” 
here in the sense in which NASH described rational solutions for N-person games, 
and not in the sense in which physical systems are described5), the crucial 
difference being that equilibrium in physical systems means that the current state 
must remain invariant according to physical laws, whereas equilibrium in game 
theory means that no actor has an incentive to change the current state.)  

Trying to translate that into a situation of social interaction, we might be 
tempted to say: As soon as the evaluation system of outcomes gives us a clear 
distinction as to which situation is preferable, such a distinction, even when small, 
will have a much higher impact on the outcome of an interaction story, measured 
by final distributions, than individual behavioural dispositions, even when quite 
accentuated.  
 

#ScenarrioscIV/0! scenario 1  2  3  4     

#DIV/0!  A B A B A B A B    

Payoff  2  0 0  2 2  0 0  2 1  0 0  2 1  0 0  2    

Matrices  2  0 0  2 2  0 0  2 2  0 0  1 2  0 0  1    

             

  A and B A and B A and B A and B    

Initial  transition matrices 0,5 0,5 0,8 0,2 0,5 0,5 0,8 0,2    

  0,5 0,5 0,8 0,2 0,5 0,5 0,8 0,2    

             

               

Final    9 31 49 19 4 12 26 9    

  Distributions  49 12 31 1 79 5 64 0    

             

Euclidean  dist 
1-2 

 Dist 
1-3 

 dist 
1-4 

 dist 
2-3 

 dist 
2-4 

 dist 
3-4 

Distances  46,
79 

 36,54  33,79  66,29  41,
46 

 27,
26 

 

 

Figure 3:  4 scenarios to observe the impact of differences in payoff matrices vs. 
differences in initial transition matrices. 
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1. entropic initial transition matrix and no equilibrium in payoff matrix, 
2. non-entropic initial transition matrix and no equilibrium in payoff matrix, 
3. entropic initial transition matrix and equilibrium in payoff matrix, and 
4. non entropic initial transition matrix and equilibrium in payoff matrix. 

 

Figure 4: Euclidean distances between the final distributions of four different scenarios. 

In other words: it takes an enormous change in initial probabilities to achieve a 
change in final distributions, but it takes a much smaller change in payoffs to 
achieve a similar effect.  

What could this possibly mean in terms of a theoretical sociological argument?  
If we interpret our payoff matrices as a more or less culturally stable pattern of 

evaluation of actions which does not change over time, and if we interpret the 
matrix of initial transition probabilities as behavioural dispositions, then the 
argument is clearly: the impact of values overweighs the impact of behavioural 
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dispositions. Behavioural dispositions have an impact only in situations of unclear 
preferences.  

7 The slower the learning process, the better the 
results 

Pareto-efficient solutions to typical dilemma situations such as the iterated 
prisoner’s dilemma are found more frequently when individuals show a behaviour 
which might superficially be rated as “silly”, i.e. the rate at which they change 
their behavioural dispositions is low, whereas a quick learning rate results more 
often in sub-optimal results for both partners. Here, we want to focus on the 
parameter of learning speed: When the rate at which transition probabilities are 
changed is high, then the chance of finding the efficient solution 
(cooperation/cooperation in the prisoner’s dilemma) is lower than in cases where 
the rate at which transition probabilities are changed is low. Therefore, slow 
learning, in the sense of keeping up a readiness to explore unsuccessful 
alternatives again and again, turns out to be more “intelligent” than fast learning, 
at least in the cases we observed.  

In Figure 5, we compare solutions to a sequential version of the chicken game 
(a variation of the prisoner’s dilemma) with fast vs. slow learning rates, for 3 
different initial transition probability matrices. We can see that the payoff sum is 
always higher at a slow learning rate than it as at a fast learning rate. 

What does this mean for sociological theory?  
A slow learning rate means that success of an action is not at once transformed 

into a readiness to repeat that same action at each occasion, but to try out the 
unsuccessful action again and again. In psychological terms, we might interpret 
slow learning as an inclination towards presumably non-rewarded behaviour. In 
several settings, such as the classical prisoner’s dilemma, such an inclination looks 
very much like a paradoxical intervention. And we know enough about situations 
requiring paradoxical interventions so that this result makes some sense. We could 
also interpret our observation as an argument for the necessity of what might at 
first glance look like “irrational behaviour”, for optimal solutions, just as in the 
case of ACO (Ant Colony Optimization), where deviations of individuals from the 
“pheromone track” are a necessary condition for the whole colony to find the 
optimal (i.e. shortest) path to food. The track they actually follow is marked by 
individual ants, secreting a chemical substance called pheromone, as they search 
food. It increases the probability of other individuals to follow this track during 
their search for food, but not in a deterministic manner: Single individuals 
sometimes “break the rule” and take another way. And a certain percentage of 
these “disobedient” individuals eventually turns out to be successful, resulting in a 
new track.  
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Payoff matrix:       Cooperation       competition 
 

Cooperation  3  2 

Competition  4  1 

 
Initial transition probabilities: 

     0,5 0,5 

     0,5 0,5 

 
learning rate:  final distribution: payoff A: payoff B:    sum of Payoff 
 
slow (0,1)  15    41  3,03  2,97  6,00 
   44  0 
 
fast (10,0)  8     42  2,70  2,78  5,48 
   38  13 
 
Initial transition probabilities: 

     0,2 0,8 

     0,2 0,8 

 
learning rate:  final distribution: payoff A: payoff B:   sum of Payoff 
 
slow (0,1)  4    49  2,93  3,00  5,93 
   45  2 
 
fast (10,0)  0    25  1,96  2,00  3,96 
   24  51 
 
Initial transition probabilities: 
     0,9 0,1 

     0,1 0,9 

 
learning rate:  final distribution: payoff A: payoff B:   sum of Payoff 
 
slow (0,1)  39    25  3,08  2,89  5,97 
   35  1 
 
fast (10,0)  33     21  2,11  2,36  4,47 
   8  38 

Figure 5: The effect of learning rates on payoff in the chicken game (a variation of the 
prisoner’s dilemma). 

 

Experiments have demonstrated that this system, in the long run, produces  
better results in terms of path optimization than a system where individuals apply 
a deterministic “greedy” behaviour. (Compare Dorigo and di Caro, 1999), and 
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Gutjahr and Eder (2001). On certain conditions, it can even be shown 
mathematically to always converge to the optimal path (Gutjahr, 2002).  

Sociological theory has often claimed that a certain amount of individuals 
“breaking the rule” is a necessary condition for the development of societies. For a 
specific set of conditions, as described above, this can even be shown 
mathematically.  

8 Conclusions 

We believe that a relatively simple process of mutual discriminative learning can 
contribute to an explanation of three phenomena whose explanations would 
otherwise require a lot more complicated assumptions.  

First: Human behaviour needs a certain amount of predictability in dyadic 
interactions, in order to make societies “function”. This necessity of predictability 
can be shown on a macrosocial level: anomia is one of the major issues in 
sociology, describing societal conditions in which predictability of behaviour, 
based on normative regulations, does not work. Anomia has both clinical 
consequences - a rise in psychosomatic disturbances and diseases - and political 
consequences: a rise in criminality. It also has a suicide aspect, as we know since 
Durkheim’s early work. Sociological descriptions of how individuals try to make 
their behaviour predictable include role theory, the analysis of institutions, norms, 
values, asf. But perhaps predictability of behaviour can often be described as a 
very simple process by which individuals condition each other, without even 
reflecting any of the aforementioned stabilizing agents. Maybe there are a lot more 
aspects of “functioning” in societies which require a lot less sociological 
terminology than we have believed so far. Or, as Heinz von Foerster (2001) has 
put it: “The whole social structure can be seen as a closed operator which makes 
certain stable values und predictable forms of interaction emerge from an infinity 
of behavioural possibilities. They select themselves from the infinite plurality of 
possibilities and cannot be explained from an analytical point of view, but can be 
predicted from the perspective of experience. Eigenvalues and intrinsic behaviours 
emerge, stable forms of interaction.” 6)  

Second: In order to predict the pattern of  interaction which will prevail after 
two individuals have conditioned each other, it may be more important to know 
how much the interaction partners benefit from each combination of actions, than 
to know their “personalities”: i.e. with which probabilities they are likely to react. 

And third: “Good” societies require a certain amount of “bad” people (at least 
if less adapted behavior is viewed as bad). Optimal solutions to dilemma situations 
are achieved more often when the trial-and-error-phase during which solutions are 
found is longer. This means that during this phase, some amount of non-
conformist behaviour is required: Behaviour which does not seem to be goal-
oriented, which does not look promising, which does not look “logical”, which 
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does not meet the other’s expectations.  We might say that on the long run, it is the 
outsiders in society who open up a chance for improvement. 

9 Epilogue: and what does all this tell us about Peter’s 
story? 

The statements we wanted to make about the contribution of our work to 
microsociological theory are said by now. But some of the readers might feel that 
there is still something missing. We started with a case report on Peter’s story and 
claimed our model would be an instrument to improve our understanding of how 
the behavioural cycles described in this story would “function”. So why don’t we 
try to apply our model to Peter’s story and  see what it tells us about Peter and his 
parents? 

For the sake of simplicity, we skip the role of the therapists and just look at 
how Peter tends to react to his parents, and vice versa. We define two actors in this 
“game”: 1. Peter, and 2., his parents, at whom we look as if they were one single 
actor. And we define two different strategies for each actor: Peter’s strategy 1 is to 
“be good” and show the behaviour we have seen in the therapeutic setting, and his 
strategy 2 is to be a bad boy, hit his mother, and do all these nasty things. His 
parents’ strategy 1 is to accept him as their beloved son, and their strategy 2 is to 
reject him (or his behaviour), and/or call the police. If we try to translate the 
behavioural cycles reported during the therapeutic setting, we get the following set 
of cyclic transition probability matrices (Figure 6): 
 
 

                Peter’s strategies:      Peter’s parents’ 
strategies: 
Peter’s parents’     1: be good   2: be a bad boy   Peter’s  1: accept   2: reject 
strategies:       strategies: 
  
1: accept                            0  1   1: be good                         1                  0                         
 
2: reject                              1     0   2: be a bad                        0                  1 
            boy                               

 

Figure 6: Hypothetical transition probability matrices for Peter’s and his parents’ 
behavioural cycles. 

 
These matrices are easy to read: Whenever Peter feels acceptance by his 

parents, he sooner or later becomes nervous, and starts misbehaving. And as soon 
as he feels rejected, he starts to become a good boy again. His parents’ behaviour 
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looks a lot more like what might superficially be rated as “logical”: when Peter is 
good, they accept him, and when he is a bad boy, they reject him and call the 
police – what else should they do?  

This is what we observe. We know not much about the preference system of 
Peter and his parents. All we know is that the parents declare that all they want 
from Peter is to be good, and Peter declares that all he wants from his parents is to 
take him back and accept and love him. The payoff matrices resulting from these 
declarations would also be easy to sketch, and they would look approximately as in 
Figure 7: 
 
  

                Peter’s parents’ preferences    Peter’s preferences: 
 
Peter’s strategies  1: be good   2: be a bad boy   Peter’s parents’ strat.: 1: accept   2: reject 
  
after his parents’    after Peter’s  
strategies                                                               strategies 
    
1: accept                            1  0   1: be good                         1                  0                         
 
2: reject                              1     0   2: be a bad                        1                  0 
            boy                               

 

Figure 7: Hypothetical payoff matrices for Peter’s  parents’ and his own preferences. 

 

These payoff matrices, we believe, are also very easy to read: no matter what 
Peter’s parents have done before, they want Peter to be good. And no matter what 
Peter has done before, he wants his Parents to accept him. Everybody wants the 
other to just be good. Again: we do not know if this is what they really want, but 
this is what they say they want, and this is what they would like to get by the help 
of therapy.  
 

                Peter’s strategies:      Peter’s parents’ 
strategies: 
Peter’s parents’     1: be good   2: be a bad boy            Peter’s  1: accept   2: reject 
strategies:                strategies: 
  
1: accept                          46        13            1: be good                46              11                         
 
2: reject                            11           30            2: be a bad               13              30 

                     boy     
 

Figure 8: Final distributions for Peter’s and his parents’ behavioural cycles, based on 
the payoff matrices as in Figure 7.  
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Our model shows us that a process of mutual discriminative learning would  
lead to the following final distributions, starting with initial transition 
probabilities that were all 0.5.  

The final distributions of Figure 8 do not show too much similarity with what 
we have observed.  Based on the payoff system as in Figure 7, at least 46% of all 
cases should show a happy end: a well-behaving Peter, being accepted by his 
parents.  Only 13% of the families with a value system as in Figure 7 would 
eventually produce behavioural rituals where acceptance of the parents induces 
Peter to his terrible behaviour. Could there be a payoff system producing final 
distributions that would show higher similarity with what we have observed in our 
case study? 

We actually do not know what really happens in that family. All we know is 
their behaviour in a therapeutic setting. And if we reduce our payoff matrix more 
closely to what we actually could observe, then we might suspect that perhaps it is 
the outcome of therapy which the actors are after: They say that they want the 
therapy to make Peter be a good boy, and thereby enable the parents to accept him 
again. If we follow the hypothesis for a little while that well-behaviour of Peter in 
his family setting does not have any favourable consequences for him, and that it 
is only well-behaving in the therapeutic setting which he sees as rewarding, then 
we would have to hypothesize a payoff matrix as the following (Figure 9): 
 
 
                Peter’s parents’ preferences    Peter’s preferences: 
 
Peter’s strategies  1: be good   2: be a bad boy   Peter’s parents’ strat.: 1: accept   2: reject 
  
after his parents’    after Peter’s  
strategies                                                               strategies 
 
1: accept                            0  0   1: be good                         0                  0                         
 
2: reject                              1     0   2: be a bad                        1                  0 
            boy                               
 

Figure 9: Another hypothetical payoff matrices for Peter’s  parents’ and his own 
preferences. 

 
In Figure 9, it is the therapy outcome that counts, and nothing else. As soon as 

Peter has been a bad boy, he highly emphasizes being accepted (again) by his 
parents. But without such a condition, he does not care too much. And as soon as 
his parents have rejected Peter, they are highly interested in his well-behaviour 
(again), but his well-behaviour does not make much of a difference for them 
otherwise. And the final distributions produced by such a system of preferences 
will look like Figure 10. 
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                Peter’s strategies:      Peter’s parents’ 
strategies: 
Peter’s parents’     1: be good   2: be a bad boy            Peter’s  1: accept   2: reject 
strategies:                strategies: 
  
1: accept                          0        12            1: be good                0              10                         
 
2: reject                         10           79            2: be a bad             12              79 

                      boy     
 

Figure 10: Final distributions for Peter’s and his parents’ behavioural cycles, based on 
the payoff matrices as in Figure 9.  

We can see: although we have made only one minor change in the preference 
system as reflected in the payoff matrices, assuming that there is no experience of 
reward for well-behaving inside the family, the “logical” outcome, as produced by 
simple discriminative learning, is dramatically different from the first scenario:  
Whenever Peter’s parents accept him, he will be a bad boy, an event which 
accounts for 12% of all behavioural combinations; this seems to match better with 
what we have observed in his biography than the final distribution in Figure 8. 
And whenever he behaves nicely, his parents will reject him.  

The feedback to the therapists from this seems to be quite clear: Do not let the 
clients impress you too much by what they declare during the therapy session. 
Rather, try to find out what  happens in that family during those phases that are 
rated as “normal”, as everyday routine, by the clients. If it should turn out that 
their everyday routine is as dull and free of any rewards as it is in our hypothetical 
payoff matrices in Figure 9, implying that they need the therapists to provide a 
rewarding link between behaviour and outcome, then the symptoms presented 
would turn out to be not more than a logical consequence of the payoff system 
which this family uses. If the family feels that reconciliation is more exciting than 
routine, then this is what they will get: and problems become a necessary condition 
for later reconciliation. 
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Footnotes 
3) If, in steady state (stable transition matrices), strategy i of the partner is actually 
responded by action j (thus implying that the corresponding  pij > 0) and all 
elements of the payoff matrix are at least marginally greater than 0, then pij must 
be 1. This can be shown as follows: 
We denote with pij

t  the probability of an actor to react to the partner’s strategy i 
by strategy j at time t, and pij

t+1 the same probability at time t+1, and with ajk the 
value which is attributed when the partner’s reacts to ego’s strategy j with strategy 
k. Then the condition for every nonzero element pij in a stable transition 
probability matrix, showing no more changes, can be formulated as: 

pij
t+1= pij

t 
 

Our updating process as described above, is defined as follows: 

jk
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t
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+
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Therefore, an updating process resulting in no changes in the transition probability 
matrix can be described as  
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This is equivalent to   jk
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Apparently, there are three cases in which the above equation is true: when either 
pij equals 1, or when ajk equals 0, or both. Therefore, since we have excluded the 
case that ajk  = 0,  pij  must  be 1. The case in which we allow for ajk  = 0,  admits 
both deterministic and non-deterministic limiting behaviour. 

 

 
4) Formally, a cyclic matrix pair can be defined in the following way: There is a subset of 
actions of actor 1, and a subset of actions of actor 2, such that the transition matrix of 
actor 1 assigns to each action of the first subset a single action of the second subset with 
probability 1, and the second transition matrix assigns to each action of the second subset 
a single action of the first subset with probability 1 (see Gutjahr and Eder, 2001). 
 
5) It is important to point out that the term “equilibrium” used here refers to a 
solution concept in game theory, introduced by NASH, and not to an equilibrium 
in physical systems. The term “NASH-equilibrium” is formally defined as follows: 
A combination (s1*, …, sn*) of the strategies of N players is a Nash equilibrum, if 
no player i can improve his/her payoff by changing from strategy si* to another 
strategy si, given that all other players choose their strategies sj* as contained in 
the strategy combination (s1*, …, sn*). 
 
 

6)  Translation into English by the authors. The original German text is as follows: 
 
„Die gesamte soziale Struktur kann als ein geschlossener Operator verstanden 
werden, der aus den unendlichen Möglichkeiten des Verhaltens gewisse stabile 
Werte und vorhersehbare Formen der Interaktion entstehen lässt, sie schälen sich – 
aus der unendlichen Vielfalt des Möglichen – heraus und sind von einem 
analytischen Standpunkt aus unerklärbar, aus der Perspektive des Erfahrbaren 
jedoch prognostizierbar. Es entstehen Eigenwerte bzw. Eigenverhalten, stabile 
Formen der Interaktion.“ 


