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Abstract

The mean residual life (mrl) function dynamically describes the average
time to an event, depending on the time since the previous event. It provides
a forecast in parallel with the development of the underlying process. From a
theoretical point of view, the mrl characterises the distribution of the process
completely, but in contrast to other characterisations like the hazard rate, it
has a direct interpretation in terms of average behaviour.

We use Kaplan–Meier integrals (weighted averages of residual times) to
construct a nonparametric estimator of the mrl. We use results from Stute
(1995) and Yang (1994) to describe the asymptotic behaviour of this estimator
and derive an approximate variance formula.

We present a small simulation study and apply the estimator (and the
variance formula) to data pertaining to purchase time behaviour from the
Homescan PanelTM, A.C. Nielsen, Germany.

1 Introduction

The mean residual life (mrl) function dynamically describes the average time to an
event, depending on the time since the previous event. As an important example
for functionals of the Kaplan–Meier estimator it has been studied by many authors,
e.g., Gill (1983), Gijbels and Veraverbeke (1991), Yang (1994) and Stute (1995).
From a theoretical point of view, the mrl characterises the distribution of the pro-
cess completely, see e.g. Shaked and Shanthikumar (1991). The mrl function can
therefore be used in model formulation just as densities or hazard functions are. The
mrl function is defined as a conditional expectation of the time to an event given
that that time is larger than a given value. Its computation thus involves integrals
over unbounded intervals of the real line. While conditional expectations are eas-
ily interpreted and often the object of immediate interest in applications, the fact
that integrals over unbounded domains are involved severely hampers the analysis
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of estimators in the presence of censoring. This issue has been discussed extensively
by Stute and Wang (1993), where a strong law of large numbers is given for such
functionals. Instead of integrating with respect to the cumulative hazard rate – as
was done in previous work – the authors use integrals with respect to the distribu-
tion function of the underlying random variable. Along the same lines, Stute (1995)
provides a central limit theorem in this situation. A crucial role is played by the
Kaplan–Meier weights, see Stute and Wang (1993, p. 1593) and Stute (1995, p. 423),
respectively. These quantities generalise the well-known weights for non-parametric
estimation in sampling theory, where the inverse inclusion probabilities are used as
weighting factors. In the presence of independent censoring, however, the suitable
weights are stochastic and vary between the observations.

2 An example from market research

A central goal of market research is to describe the market performance of ”fast mov-
ing” consumer goods (fmcg). Those are products which are perishable or quickly
used up, like food or detergents in contrast to cars, washing machines etc. Through-
out this paper, we primarily have fmcg in mind when we talk about products. Both
manufacturers and retailers have a strong interest in identifying the more or less
successful items of a product class (pc). One way of doing this is to collect data
on the purchase behaviour of households. Specifically, we may observe the purchase
acts of the participating consumers for a pc of interest during a fixed period, say
one year. We call the duration between two consecutive purchase acts by the same
household an interpurchase time (ipt). As a pc consists of several items, different
types of ipt occur: On the aggregate level, we have the time between two purchases
in the pc, while for each product, there is also an item-specific ipt starting and
ending with a purchase of the specific article.

In order to reduce problems of dependencies between observations we use only
one ipt of each type per household in the sample. When interpreting the data, we
also have to be aware of possible censorings. They occur at the end of the observation
period, in case no repurchase has taken place by then.

Statistical inference concerning durations falls into the realm of survival analysis,
where the most common quantity is the hazard rate. In this paper, however, we
will focus on the mean residual life function (mrl) instead: Denote by T the ran-
dom variable describing the length of the ipt and by F its cumulative distribution
function. Then the mrl m(t) at some time t equals the average remaining time to
repurchase, given this event has not yet taken place:

m(t) := ET (T − t | T > t) =

∫∞

t
u − t dF (u)

1 − F (t)
(2.1)

We will discuss the mrl in more detail in Section 3. For the moment, we only note
that the mrl is a conditional expectation and thus describes the mean behaviour of
consumers. This feature makes it an interesting quantity for traditional marketing,
where it is impossible to focus on specific, single consumers and one has to deal with
the whole group of households instead. As an illustration, we present data pertaining
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to purchase time behaviour from the Homescan PanelTM of A. C. Nielsen, Germany.
It is based on approximately 5,800 households surveyed in 2001. We focus on two
items of an anonymised pc. Central facts of this pc and the two selected items,
’focus’ and ’competitor’, are given in the next table:

penetration market share proportion of
repurchasing HH

Class 0.58 - 0.78
Focus 0.03 0.014 0.50
Comp. 0.14 0.077 0.61

In words, 58% of the German households purchased the pc in 2001, 3% bought
the focus item and 14% bought the competitor item at least once. With market
shares of 1.4% and 7.7%, neither of the two products has an overwhelming influence
on the development of the pc. On the aggregate level, censoring occurred in 22%
of the observations. On the item level, censoring is rather heavy, 50% and 39%,
respectively. In Section 4, we present a non-parametric estimator for the mrl in this
situation, see (4.3). Applied to our data truncated at τ ∗ = 365 days2, the resulting
curves are given in Figure 1.
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Figure 1: Estimated mrl functions according to (4.3) for the data presented in

Section 2.

On a qualitative level, the estimated mrls suggest the following interpretation:
The mrl of the pc serves as a reference. To some extent, it provides information

2Truncation to [0, 365] means that we used only repurchase times that happened within a year.
We are thus looking at the conditional mrl given that repurchase happened within a year. Purchase
data from the panel households is available for the following months as well, if we neglect the slight
but inevitable panel mortality. Consequently, one might aim at extending the truncation time τ ∗,
thus diminishing the loss of information. On the other hand, for a household to contribute to the
actually used purchase data, it is required that its overall reporting quality exceeds a certain level
over the whole period in question. As a result, extending the relevant observation period leads to
a decreased sample size presumably offsetting any benefits.
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on how the average consumer purchases the typical item of this pc. The mrl of
the competitor stays rather close to the pc’s mrl. This implies that its consumers
perceive this specific item to ’represent’ the pc: whenever the average consumer
repurchases the pc, the customer of the competitor’s item repurchases this specific
product. Clearly, this makes the competitor a successful article within the pc. From
the focus item’s point of view, the situation is considerably less comfortable: Ap-
proximately two months (56 days) after the last purchase act, the average remaining
time to repurchase of the focus item is 40 days longer than it is for the pc.

To determine whether the differences between the estimated mrl functions really
support these arguments or merely occurred ’by chance’, we have to introduce a
stochastic model of our situation and estimate variances of the mrl estimates as well.
We suggest several variance formulae in Section 5 and evaluate their performance
in section 6. Concerning the real life data, it turns out that the corresponding
estimations do not render any differences between the mrls significant.

3 Mean Residual Life function

The mrl function defined in (2.1) determines the distribution uniquely. If F is abso-
lutely continuous one can compute the distribution function from the mrl function
by

1 − F (t) =
m(0)

m(t)
exp

{
−

∫ t

0

1

m(u)
du

}
, (3.1)

see Shaked and Shanthikumar (1991, p. 614). The mrl function can thus be used as
a characterisation of the distribution in the same way as the density or the hazard
function can.

As an example, consider a mrl function which is linear on some interval I =
[t1, t2]. For t ∈ I, the mrl thus has the form

m(t) = a · (t − t1) + m(t1),

where m(t1) > 0 and a ≥ −1. In case a < 0, we also have to ensure that t2 ≤

t1 −
m(t1)

a
.

For a 6= 0, the distribution function on I then equals a Pareto distribution scaled
by F (t1):

F (t) = F (t1) ·

(
a · (t − t1)

m(t1)
+ 1

)−
a+1

a

, t ∈ I

Specifically, if a = −0.5, the distribution function is linear and the distribution on
I is consequently uniform.

For a = 0, the distribution function on I is exponential:

F (t) = F (t1) · exp

(
−

t − t1
m(t1)

)

Thus, if the mrl function is given on the interval I we get the behaviour of F
restricted to I, and complete knowledge of F on I if F (t1) was known. Note that
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both formulae simplify considerably in terms of ’local coordinates’ F (t)/F (t1) and
(t − t1)/m(t1).

In the presence of censoring there may be a point in time after which it is
impossible to gather further information. Let τ be the least upper bound on the
period of observation. Then the best one can hope for is to estimate integrals up
to that point in time. The definition of the mrl function, however, requires an
evaluation of the integrals to ∞, not only up to τ . Moreover, the truncation point
τ is generally unknown (and not easily estimable).

We will therefore consider to estimate

m∗(t, τ ∗) := E(T − t |T ∈ (t, τ ∗)) =

∫ τ∗

t
u − t dF (u)
∫ τ∗

t
dF (u)

(3.2)

for some τ ∗ ≤ τ . This truncated mrl function m∗ need not be related to the mrl
function m in any obvious way. However, m∗ is still a conditional expectation with
an easy interpretation and important applications. Moreover, as a generalisation of
(3.1), the truncated mrl function uniquely identifies the distribution function up to
τ ∗ through

F (τ ∗) − F (t) =
m∗(0, τ ∗)

m∗(t, τ ∗)
exp

(
−

∫ t

0

du

m∗(u, τ ∗)

)
(3.3)

To see this, note that for continuously differentiable (in t) m∗

∂m∗(t, τ ∗)

∂t
=

∂

∂t

∫ τ∗

t
u − t dF (u)
∫ τ∗

t
dF (u)

=

(
−tf(t) −

∫ τ∗

t

f(u) du + tf(t)

)
1

F (τ ∗) − F (t)

+
f(t)

(F (τ ∗) − F (t))2

∫ τ∗

t

(u − t)f(u) du

= −1 + m∗(t, τ ∗)
f(t)

F (τ ∗) − F (t)

Thus

−
∂

∂t
ln (F (τ ∗) − F (t)) =

∂m∗(t,τ∗)
∂t

+ 1

m∗(t, τ ∗)

so that

F (τ ∗) − F (t) = exp

(
−

∫ t

0

∂m∗(v, τ ∗)/∂v |v=u

m∗(u, τ ∗)
+

1

m∗(u, τ ∗)
du

)

from which (3.3) follows by noting that the first fraction under the integral is the
logarithmic derivative of m∗(u, τ ∗).

4 Kaplan–Meier integrals

With complete data an estimator of the mrl function is

m̂(t) :=

∫∞

t
u − t dFn(u)∫∞

t
dFn(u)

=

∑n
i=1(ti − t)1[ti > t]∑n

i=1 1[ti > t]
(4.1)
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With censored observations it is natural to replace Fn by the Kaplan-Meier estimator

1 − F̂n(t) =

n∏

i=1

(
1 −

δ(i)

n − i + 1

)
1[z(i)≤t]

(4.2)

where zi = min{ti, ui} are the censored observations, δi = 1[ti ≤ ui] are the censoring
indicators and z(1) ≤ . . . ≤ z(n) are the ordered values of the observed times while
the δ(i) are the corresponding censoring indicators. For a given upper limit τ ∗, the
equation (4.1) becomes

m̂∗(t, τ ∗) :=

∫ τ∗

t
u − t dF̂n(u)
∫ τ∗

t
dF̂n(u)

=

∑n
i=1(ti − t)1[ti > t]wi∑n

i=1 1[ti > t]wi
(4.3)

where the wi are the jump sizes F̂n(ti) − F̂n(ti−) of the Kaplan–Meier estimator.
Note that if the largest observation is censored we will not force 1 − F̂n to be zero
after that observation.

In order to analyse the estimator (4.3) we propose a simple stochastic model that
will allow the calculation of approximate variances (within that model, of course) and
that might be used to gauge the performance of the estimator on real data sets. We
will assume that the observations arise from independent and identically distributed
copies of the random variables (T, U), where T and U are independent and T has
distribution function F while U has distribution function G. Then 1 − H(t) =
(1−F (t))(1−G(t)) is the survivor function of the random variable Z := min{T, U}.
We set δ := 1(T ≤ U) and let τ := inf{t | H(t) = 1} be the least upper bound of
the support of Z. In the following we will assume that F is absolutely continuous
while we allow for an arbitrary distribution of G. Note, however, that Stute’s (1995)
results are valid for general F and general G, while Yang’s results (1994) allow G to
vary with the observations but requires absolute continuous F . Our restriction to
absolutely continuous F and identically distributed censoring times is however often
applicable and simplifies the formulations considerably. Extending the integrals with
respect to F̂n up to τ requires delicate considerations on the behaviour of F̂n near τ .
The point is well discussed by Stute and Wang (1993) and by Gill (1994). We will
here avoid an explicit discussion by either truncating to τ ∗ or by assuming τ = ∞.
In the simulations we will use a distribution function F with a compact support
strictly included in the support of G.

5 Variance formulae

The weights in the formula for m̂∗ will in the presence of censoring depend on
all the censored observations preceding a given event time. The weights wi are
therefore not independent random variables in our model. There is, however, a
general representation of Kaplan–Meier integrals in terms of sums of independent
random variables given by Stute (1995, p. 425). Using that representation, standard
results on sums of independent random variables can be used to derive variances
of the estimator m̂∗. In the case of absolutely continuous F , the representation
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simplifies considerably and can be written as

∫ ∞

0

φk(u) dF̂n(u) −

∫ τ

0

φk(u) dF (u) =

1

n

n∑

i=1

∫ ∞

0

φk(u) − E(φk(T ) |T > u)

1 − G(u−)
dMi(u) + oP (n−1/2) k = 1, 2

where

φ1(u) := 1[u > t](u − t) , φ2(u) := 1[u > t]

and where

Mi(t) := 1[ti ≤ t, δi = 1] −

∫ t

0

1[zi ≥ u]

1 − F (u)
dF (u)

is the martingale for the counting process 1[ti ≤ t, δi = 1] with respect to the
standard filtration (see the Appendix for a derivation).

The representation gives among other results a variance formula via a standard
martingale argument (details are deferred to the Appendix):

Var

(∫ ∞

0

φk(u) − E(φk(T ) |T > u)

1 − G(u−)
dMi(u)

)
= (5.1)

∫ ∞

0

(φk(u) − E(φk(T ) |T > u))2

1 − G(u−)
dF (u) =: σ2

k , k = 1, 2

This formula was also derived via a direct argument by Yang (1994).
While the above formulae are useful in theoretical work, practical computations

will also have to rely on a direct empirical counterpart of Stute’s representation. We
start from the ordered values z(i), i = 1, . . . , n and the corresponding values δ(i) and
φki := φk(z(i)). We then define (assuming no ties):

γi := exp

(
i−1∑

j=1

1 − δ(j)

n − j

)
i = 2, . . . , n γ1 := 1

aki := δ(i)φkiγi i = 1, . . . , n

bki :=
1 − δ(i)

n − i

n∑

j=i+1

akj i = 1, . . . , n − 1 bkn := 0

cki :=

i−1∑

j=1

bkj

n − j
i = 2, . . . , n ck1 := 0

Finally, we set

Aki := aki + bki − cki i = 1, . . . , n, k = 1, 2 (5.2)

Writing

m̂∗(t, τ ∗) =

∫ τ∗

t
u − t dF̂n(u)
∫ τ∗

t
dF̂n(u)

=:
Â1

Â2

(5.3)
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we get an expression for the variance of the fraction using the delta method:

Var (m̂∗(t, τ ∗)) ≈
Â2

1nσ̂
2
2

nÂ4
2n

+
σ̂2

1

nÂ2
2n

− 2
Â1n

nÂ3
2n

Cov(Â1n, Â2n) (5.4)

where σ̂2
1 is the estimated variance of Â1 and σ̂2

2 is the estimated variance of Â2.

6 A small simulation study

The variance approximations of the previous section can be implemented in various
ways. In this section we will use simulations to evaluate some of the possible choices.
To keep things simple, we use only the exponential distribution with expectation 1
truncated to [0, 2] for F , i.e. F (t) = (1 − exp(−t))/(1 − exp(−2)) on t ∈ [0, 2]. The
truncation assures finiteness of all moments with respect to F and thus all regularity
requirements for the validity of the variance formulae are fulfilled. We evaluate the
mrl at 0.2, 0.5, 1.0 and 1.5. The mrl at these points is 0.6435, 0.5691, 0.4180
and 0.2293. The survival probabilities 1 − F (t) at the evaluation points are 0.79,
0.55, 0.27, and 0.10. As censoring distributions we use the exponential distribution
with expectations 5 and 1 corresponding to censoring probabilities of 0.12 and 0.43,
respectively. The corresponding expected proportions at risk are 0.65, 0.33, 0.10,
and 0.02 using a censoring distribution with expectation 1, and 0.76, 0.49, 0.22, and
0.08 using a censoring distribution with expectation 5. Sample sizes are 200 and
1000. We use 1000 simulations for each of the combinations.

Table 1 gives the mrl at the evaluation points together with summary statistics
for the estimated mrl from the simulations. The mrl estimator is slightly downward
biased for smaller numbers of observations and for later times. This was to be
expected from the supermartingal structure of Kaplan-Meier integrals as discussed
by Stute and Wang (1993) and the bias of the Kaplan-Meier estimator itself as
given in Fleming/Harrington (1991, p. 99). Possible consequences and remedies are
described by Miller (1983) and Gill (1994, section 8).

In our situation, the asymptotic variances from (5.1) and (5.4) can be computed
explicitly. They are also given in Table 1. For n = 1000, the agreement with the
variances estimated in the simulation experiment is excellent. For n = 200, however,
the variances of the mrl estimates tend to be larger than the asymptotic variances
suggest. Note that the variances are multiplied by 100 in the case of n = 200 and
by 1000 in the case of n = 1000.

Turning to the empirical variance estimators, a simple approach would be to use
the empirical variance of the terms A1i/A2i, thus avoiding the use of (5.4). Even
when using the empirical variances of the Aki separately, one might try simpler
versions of (5.4). Yang (1994, p. 342) proposed to use just the variance of the
numerator. Since the denominator is consistent, an appeal to Slutsky’s lemma
shows this to be a consistent variance estimator. But this would work well only
if the expectation of the numerator would be 0. A further possibility is to use both
empirical variances, but to ignore the covariance. But the covariance is by definition
far from 0. In fact, in our simulation setup, the results using these three estimators
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Table 1: Simulation results for the mrl estimator.

Experiment t=0.2 t=0.5 t=1.0 t=1.5
true mrl 0.6435 0.5692 0.4180 0.2293
n = 200, U ' exp(1) Min 0.4637 0.3561 0.1457 0.0020

Mean 0.6376 0.5628 0.4087 0.2199
Max 0.8173 0.7816 0.7404 0.4931
NA 0 0 0 30
Var (×102) 0.3130 0.4463 0.6818 0.7556
as. Var 0.2769 0.3667 0.5123 0.5139

n = 200, U ' exp(0.2) Min 0.5315 0.4427 0.2859 0.0747
Mean 0.6442 0.5703 0.4178 0.2296
Max 0.7486 0.7047 0.6058 0.3622
NA 0 0 0 0
Var (×102) 0.1534 0.1847 0.2046 0.1588
as. Var 0.1647 0.1823 0.1886 0.1401

n = 1000, U ' exp(1) Min 0.5718 0.4926 0.3319 0.1178
Mean 0.6427 0.5688 0.4166 0.2278
Max 0.7180 0.6598 0.5164 0.3521
NA 0 0 0 0
Var (×103) 0.5558 0.7852 1.0237 1.1719
as. Var 0.5538 0.7334 1.0247 1.0277

n = 1000, U ' exp(0.2) Min 0.5837 0.5144 0.3590 0.1891
Mean 0.6434 0.5693 0.4177 0.2298
Max 0.7070 0.6351 0.4843 0.2824
NA 0 0 0 0
Var (×103) 0.3353 0.3854 0.3766 0.2688
as. Var 0.3295 0.3646 0.3773 0.2802

had no clear relation with the observed variance of the mrl. We will therefore not
present the results in our simulation reports.

A second approach uses the Kaplan–Meier estimator (and its estimated variance)
in the denominator of the mrl and in its variance estimator. We will not pursue this
possibility here, since we are mainly interested in the performance of Kaplan–Meier
integrals. We will therefore also use only the Kaplan–Meier integrals in empirical
versions of (5.1).

A third possibility is a direct application of the discrete representation of Stute.
This means to compute the terms in (5.2) and use the empirical means, variances,
and covariances of these terms in (5.4). We denote this estimator by σ̂2

S.
In σ̂2

S, one might replace the terms Âkn by the respective terms used in the mrl
estimator. This should give estimators that are better centered and possibly be less
variable. We denote this estimator by σ̂2

mrl.

Lastly, we use an empirical version of Yang’s formula (5.1) where we use the
estimated mrl for the inner expectation and the empirical Kaplan–Meier integrals
for the outer integral. The denominator in the integrand is estimated by the Kaplan–
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Meier estimator. Moreover, in (5.4), we use the mrl estimators for the Âkn terms.
This version will be denoted by σ2

Y .
Note that, from a computational point of view, σ̂2

Y requires the computation
of the mrl at all (unique) points zi. In contrast, both σ̂2

mrl and σ̂2
S can easily be

computed point-wise but are relatively more expensive when the variances are re-
quired at all observed points. All three variants, however, are computationally much
cheaper than a bootstrap approach.

Table 2: Simulation results for variance estimators, n = 200.

U ' exp(1) t=0.2 t=0.5 t=1.0 t=1.5
sim. Var (×102) 0.3130 0.4463 0.6818 0.7556

σ̂2
S Min 0.0012 0.0013 0.0009 0.0000

Mean (×102) 0.4104 0.5134 0.6052 0.3152
Max 0.0250 0.0299 0.0313 0.0241

σ̂2
mrl Min 0.0012 0.0013 0.0009 0.0000

Mean (×102) 0.4484 0.5801 0.7441 0.4086
Max 0.0349 0.0514 0.0532 0.0380

σ̂2
Y Min 0.0011 0.0012 0.0009 0.0000

Mean (×102) 0.2858 0.3899 0.6235 1.6433
Max 0.0072 0.0155 0.0512 0.3453

U = exp(0.2)
sim. Var (×102) 0.1534 0.1847 0.2046 0.1588

σ̂2
S Min 0.0011 0.0012 0.0010 0.0003

Mean (×102) 0.1675 0.1853 0.1897 0.1438
Max 0.0041 0.0049 0.0067 0.0060

σ̂2
mrl Min 0.0011 0.0012 0.0010 0.0003

Mean (×102) 0.1682 0.1863 0.1917 0.1474
Max 0.0044 0.0053 0.0080 0.0097

σ̂2
Y Min 0.0011 0.0012 0.0011 0.0004

Mean (×102) 0.1686 0.1888 0.2032 0.1959
Max 0.0023 0.0029 0.0047 0.0101

Looking first at the results for the case n = 200 and U ' exp(0.2) (Table 2), all
three variance estimators are in rather close agreement with the simulated variances,
even at t = 1.5. Moreover, σ̂2

S ≤ σ̂2
mrl ≤ σ̂2

Y in the mean over all simulations, where
also the variability of the estimators increases in this order.

The situation is less favourable in the case of heavy censoring and n = 200,
also given in Table 2. Here, all estimators show a large variability. For t ≤ 1, σ̂2

Y

seems to work best. However, at t = 1.5, none of the estimators is even close to the
variability of the mrl estimator. But note that in this case the asymptotic variance
is also not close to the observed variability of the mrl estimator.

Turning to the case n = 1000 with light censoring (Table 3), all three variance
estimators are close together and close to the simulated variances. Once again, we
find σ̂2

S ≤ σ̂2
mrl ≤ σ̂2

Y in the mean over all simulations. We had expected to see σ̂2
Y
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Table 3: Simulation results for variance estimators, n = 1000.

U ' exp(1) t=0.2 t=0.5 t=1.0 t=1.5
sim. Var (×103) 0.5558 0.7852 1.0237 1.1719

σ̂2
S Min 0.0004 0.0005 0.0006 0.0003

Mean (×103) 0.6155 0.8133 1.1273 1.1074
Max 0.0039 0.0052 0.0069 0.0041

σ̂2
mrl Min 0.0004 0.0005 0.0006 0.0004

Mean (×103) 0.6233 0.8281 1.1671 1.1989
Max 0.0043 0.0061 0.0098 0.0092

σ̂2
Y Min 0.0004 0.0005 0.0006 0.0003

Mean (×103) 0.5579 0.7436 1.0644 1.2491
Max 0.0007 0.0010 0.0017 0.0036

U ' exp(0.2)
sim. Var (×103) 0.3353 0.3854 0.3766 0.2688

σ̂2
S Min 0.0003 0.0003 0.0003 0.0002

Mean (×103) 0.3302 0.3658 0.3781 0.2826
Max 0.0004 0.0004 0.0005 0.0005

σ̂2
mrl Min 0.0003 0.0003 0.0003 0.0002

Mean (×103) 0.3305 0.3661 0.3787 0.2834
Max 0.0004 0.0004 0.0005 0.0005

σ̂2
Y Min 0.0003 0.0003 0.0003 0.0002

Mean (×103) 0.3311 0.3676 0.3837 0.2978
Max 0.0004 0.0004 0.0005 0.0005

perform less satisfactorily than the other two estimators since with a small amount
of censoring the explicit use of the Kaplan–Meier estimator 1 − Ĝ as a weight in
(5.1) might result in unstable behaviour. But this seems not to be the case here.

In the case with heavy censoring (U ' exp(1)) we see that σ̂2
Y compares favourably

with the other two estimators: It is somewhat closer to the simulated variances and
has less variability. To look closer at the problem with the other two estimators, we
sampled one of the Aki from each of the 1000 simulation runs. Density estimates of
the numerator and denominator variables are given in Figure 2. The distributions
of the empirical Ak terms are far from normal. They are multimodal with one of the
modes close to 0 and they have rather heavy tails. Moreover, the empirical versions
of the Aki are dependent so that the variances of the Aki are difficult to estimate
accurately. This might explain the larger variability of σ̂2

S and σ̂2
mrl compared to

σ̂2
Y . Moreover, with a larger proportion of censored observations the estimator of

the distribution of the censoring variable stabilises and thus also Yang’s estimator
stabilises.

In conclusion, our limited experience suggests that the variance estimator σ̂2
Y is

to be preferred in cases of heavy censoring, while with light censoring all estimators
behave similarly.

Lastly, we look at a borderline case where the expectation in (5.1) is finite but
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where the bias condition (1.6) of Stute (1995, p. 425) is violated. Suppose F is
exponential with expectation 1 and G is exponential with expectation 5. In this
case, the mrl of F is constant 1. The function C(x) is given by

C(x) =

∫ x−

0

1

(1 − H(u))(1 − G(u))
dG(u) =

0.2

1.2

(
e1.2x − 1

)

and thus ∫
φk(x)

√
C(x) dF (x)

diverges for k = 1, 2. With a sample size of n = 1000 (Table 4), the variance esti-
mators σ̂2

mrl and σ̂2
S are rather larger than the simulated variances while σ̂2

Y is still
quite close. Moreover, the latter is much less variable than the other two. In fact,
looking at the behaviour of the Aki, they show very heavy tails with occasional huge
values.
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Figure 2: Density estimates for A1i (left) and A2i (right). Solid line: t = 0.2, short

dashed line: t = 0.5, dashed and dotted line: t = 1.0, long dashed line: t = 1.5.

Looking at a sample size of n = 200 (Table 5), the mrl has a somewhat larger
downward bias. The variance estimators based on the Aki are now rather far from
the simulated variances especially at larger t. The estimator σ̂2

Y is closer to the
simulated variances. In conclusion, there seems to be some leeway to improve on
variance estimators based on the Aki, possibly also in the case of light censoring.
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Table 4: Simulation results, F ' exp(1), G ' exp(0.2), n = 1000.

t=0.2 t=0.5 t=1.0 t=1.5
mrl Min 0.8742 0.8424 0.7749 0.7495

Mean 0.9950 0.9936 0.9906 0.9836
Max 1.1390 1.1382 1.2160 1.2711
Var (×103) 1.5778 2.2273 4.0604 7.5099

σ̂2
S Min 0.0010 0.0013 0.0019 0.0025

Mean (×103) 1.8755 2.7261 5.0650 9.3061
Max 0.0148 0.0233 0.0551 0.1101

σ̂2
mrl Min 0.0010 0.0013 0.0019 0.0025

Mean (×103) 1.8863 2.7482 5.1377 9.5365
Max 0.0152 0.0242 0.0587 0.1216

σ̂2
Y Min 0.0009 0.0012 0.0019 0.0025

Mean (×103) 1.5599 2.2317 4.0548 7.3789
Max 0.0047 0.0075 0.0196 0.0442

Table 5: Simulation results, F ' exp(1), G ' exp(0.2), n = 200.

t=0.2 t=0.5 t=1.0 t=1.5
mrl Min 0.7533 0.6608 0.6291 0.4774

Mean 0.9857 0.9819 0.9772 0.9663
Max 1.2871 1.3645 1.4910 1.7176
Var (×102) 0.8320 1.2447 2.1862 4.1630

σ̂2
S Min 0.0032 0.0036 0.0040 0.0043

Mean (×102) 1.0050 1.4446 2.6152 4.5671
Max 0.1212 0.1998 0.3797 0.6479

σ̂2
mrl Min 0.0032 0.0036 0.0041 0.0043

Mean (×102) 1.0286 1.4921 2.7655 5.0157
Max 0.1368 0.2372 0.5054 0.8394

σ̂2
Y Min 0.0033 0.0037 0.0042 0.0044

Mean (×102) 0.7962 1.1502 2.1417 4.0573
Max 0.0429 0.0661 0.1197 0.4599
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de Saint–Flour XXII. Berlin: Springer, 115-241.

[5] Miller, R.G. (1983): What price Kaplan–Meier?. Biometrics, 39, 1077-1082.

[6] Shaked, M. and Shanthikumar, J.G. (1991): Dynamic multivariate mean residual
life functions. J. Appl. Prob., 28, 613-629.

[7] Stute, W. (1995): The central limit theorem under random censorship. Ann.

Statist., 23, 422-439.

[8] Stute, W. and Wang, J.-L. (1993): The strong law under random censorship.
Ann. Statist., 21, 1591-1607.

[9] Yang, S. (1994): A central limit theorem for functionals of the Kaplan–Meier
estimator. Stat. and Prob. Letters, 21, 337-345.

Appendix

For a function φ with E(|φ(T )|) < ∞ which also meets the appropriately modi-
fied moment conditions (1.5) and (1.6) in Stute (1995, p. 425), Stute (1995) gives
a representation of the Kaplan–Meier integral

∫ τ

0
φ(u) dF̂n(u) in terms of sums of

independent random variables up to oP (n−1/2). We specialise to absolutely contin-
uous distributions F and G and assume τ = ∞. This rather special case leads to
a transparent derivation of the main variance formula and allows to compare the
results of Stute (1995) with those of Yang (1994). In particular, Stute’s moment
condition (1.5) and Yang’s condition (ii) (Yang 1994, p. 339) simply reads

∫ ∞

0

φ(u)2

1 − G(u)
dF (u) < ∞

Stute’s representations in the special case can be written

δφ(Z)

1 − G(Z)
+ (1 − δ)

E(φ(T ) |T > Z)

1 − G(Z)
−

∫ ∫
φ(w)1(v < Z)1(v < w)

1 − H(v)
dF (w) dΛG(v)

(6.1)

where ΛG(t) :=
∫ t

0
dG(u)

1−G(u)
is the integrated hazard function of G. The expectation of

the above expression with respect to (δ, Z) is easily seen to be E(φ(T )): Compute the
conditional expectation of the first term given {T = t} to see that the expectation
of that term is E(φ(T )). For the last two terms, simply write out the expectation
with respect to (δ, Z).

Subtracting the expectation E(φ(T )) and evaluating (6.1) at a fixed argument t
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we get

δ

[
φ(t)

1 − G(t)
−

E(φ(T ) |T > t)

1 − G(t)

]
(6.2)

+
E(φ(T ) |T > t)

1 − G(t)
−

∫ ∫
φ(w)1(v < t)1(v < w)

1 − H(v)
dF (w) dΛG(v)

−E(φ(T ))

We will start by re-expressing the double integral. For this, note that ΛH = ΛF +ΛG

from the definition of the distribution function of Z. Thus,

∫ ∫
φ(w)1(v < t)1(v < w)

1 − H(v)
dF (w) dΛG(v)

=

∫ ∫
φ(w)1(v < t)1(v < w)

1 − H(v)
dF (w) d(ΛH(v) − ΛF (v))

=

∫ ∫
φ(w)1(v < t)1(v < w)

(1 − H(v))2
dH(v) dF (w)

−

∫ ∫
φ(w)1(v < t)1(v < w)

(1 − H(v))(1− F (v))
dF (v) dF (w)

=

∫ (
1

1 − H(min(t, w))
− 1

)
φ(w) dF (w)

−

∫ ∫
φ(w)1(v < t)1(v < w)

(1 − H(v))(1− F (v))
dF (v) dF (w)

where we used Fubini’s theorem in the second equation, and where the first term in
the third equation results from a transform of variables.

The last three terms in (6.2) can thus be written as

E(φ(T ) |T > t)

1 − G(t)
−

∫ ∫
φ(w)1(v < t)1(v < w)

1 − H(v)
dF (w) dΛG(v) − E(φ(T ))

=

∫ ∞

t

φ(w)

1 − H(t)
dF (w) −

∫ ∫
φ(w)1(v < t)1(v < w)

1 − H(v)
dF (w) dΛG(v)

−

∫ ∞

0

φ(w) dF (w)

=

∫ ∞

t

φ(w)

1 − H(t)
dF (w) −

∫ (
1

1 − H(min(t, w))
− 1

)
φ(w) dF (w)

+

∫ ∫
φ(w)1(v < t)1(v < w)

(1 − H(v))(1 − F (v))
dF (v) dF (w)−

∫ ∞

0

φ(w) dF (w)

= −

∫ t

0

φ(w)

1 − H(w)
dF (w) +

∫ t

0

E(φ(T ) |T > v)

1 − H(v)
dF (v)

= −

∫ t

0

φ(w)

1 − G(w)
dΛF (w) +

∫ t

0

E(φ(T ) |T > v)

1 − G(v)
dΛF (v)

= −

∫
φ(w) − E(φ(T ) |T > w)

1 − G(w)
1(w < t) dΛF (w)
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Defining

Mi(t) := 1[ti ≤ t, δ = 1] −

∫ t

0

1[zi ≥ u]

1 − F (u)
dF (u)

to be the martingale for the counting process 1[ti ≤ t, δi = 1] with respect to the
standard filtration, we can finally write (6.1) for the i–th observation as

∫
φ(u) − E(φ(T ) |T > u)

1 − G(u)
dMi(u) (6.3)

In sum, we have the representation

∫ ∞

0

φ(u) dF̂n(u) −

∫ ∞

0

φ(u) dF (u) = (6.4)

1

n

n∑

i=1

∫ ∞

0

φ(u) − E(φ(T ) |T > u)

1 − G(u)
dMi(u) + oP (n−1/2)

which is just (5.1).

With the last representation at hand it is easy to derive a variance expression
using standard martingale arguments:

VarZ,δ

(∫ ∞

0

φ(u) dF̂n(u) −

∫ ∞

0

φ(u) dF (u)

)

= EZ,δ

((∫ ∞

0

φ(u) dF̂n(u) −

∫ ∞

0

φ(u) dF (u)

)2
)

≈ EZ,δ

((∫ ∞

0

φ(u) − E(φ(T ) |T > u)

1 − G(u)
dM(u)

)2
)

= EZ,δ

(∫ ∞

0

(
φ(u) − E(φ(T ) |T > u)

1 − G(u)

)2

d 〈M, M〉 (u)

)

= EZ,δ

(∫
1(Z > u)

(
φ(u) − E(φ(T ) |T > u)

1 − G(u)

)2

dΛF (u)

)

=

∫ ∫
1(z > u)

(
φ(u) − E(φ(T ) |T > u)

1 − G(u)

)2
1

1 − F (u)
dF (u) dH(z)

=

∫
(1 − H(u))

(φ(u) − E(φ(T ) |T > u))2

(1 − H(u))(1 − G(u))
dF (u)

=

∫
(φ(u) − E(φ(T ) |T > u))2

1 − G(u)
dF (u)

This is also Yang’s (1994) variance formula valid for arbitrary G. We will also
need the covariances of the representations for φ1 and φ2. Shortening φk(u) −
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E(φk(T ) |T > u) to R(φk)(u) we have by a similar reasoning as above:

Cov

(∫ ∞

0

R(φ1)(u)

1 − G(u)
dM(u),

∫ ∞

0

R(φ2)(u)

1 − G(u)
dM(u)

)

= EZ,δ

(∫ ∞

0

R(φ1)(u)R(φ2)(u)

(1 − G(u))2
d 〈M, M〉 (u)

)

= EZ,δ

(∫ ∞

0

1(Z > u)
R(φ1)(u)R(φ2)(u)

(1 − G(u))2
dΛF (u)

)

=

∫ ∫
1(z > u)

R(φ1)(u)R(φ2)(u)

(1 − G(u))2
dΛF (u) dH(z)

=

∫ ∞

0

R(φ1)(u)R(φ2)(u)

1 − G(u)
dF (u)


