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Abstract

Conjoint Analysis is a popular method in marketing research that is mainly
used for product development. In a quasi-experimental setting product fea-
tures (attributes) like brand, price or packaging are varied and the resulting
synthetical products are evaluated by a sample of subjects. The major aim is
to estimate (i) the attractivity of the products, (ii) the impact of the features
for the product attractivity, and (iii) the market share. Estimating the attrac-
tivity is equivalent to scaling the products, and therefore we refer to (i) as the
Scaling Problem and to (ii) as the Impact Problem. In most cases ANOVA-
type of analyses are performed on both an individual and an aggregate level.
The major disadvantages of this approach are, that the dependencies between
the responses are not considered, and further that homogeneity of the sub-
jects is assumed. For binary data from pairwise comparisons we propose to
make use of a class of models from Item-Response-Theory (IRT), namely the
Rasch Models. The Rasch Model (RM) was developed for the analysis of data
from mental tests. It is a model for multivariate data that allows to model
subject heterogeneity by the specification of corresponding parameters. The
Linear Logistic Test Model (LLTM) allows to restrict the parameters of the
RM, and here it is used for estimating the Scaling and the Impact parameters.
The approach is applied to data from research on the objective determinants
of subjective perception of car engine noise. The data analyses show that
conventional Conjoint Analysis and the IRT-approach differ substantially in
the estimates for product attractivity and market share. Modelling with and
without subject variability makes a difference. The estimates from the models
containing subject parameters are assumedly more reliable and consequently
make a better basis for marketing decisions.

1 Introduction

Conjoint Analysis is a widely used methodology in marketing research that mainly
addresses the following problems:

1. The Scaling Problem - measuring the attractivity of products.
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2. The Impact Problem - determining the impact of product attributes (features
like price, brand, package, color etc.) on the attractivity.

3. The Share Problem - estimating market shares.

The data for Conjoint Analyses stem from evaluations of products - or in a more
general setting - evaluations of objects. Depending on the measurement procedure
binary, ranking, rating or even metric data are collected. For metric data scaling
is simply done by data collection, whereas for the other kinds of data a separate
analysis has to be performed. In all cases some kind of a regression model is used for
the Impact Problem and the estimated coefficients are called ”part-worths”. Thus
a successfull Conjoint Analysis ends up with understanding which attributes drive
the consumers’ choices from a set of products.

The paired comparison procedure is a classical method for product evaluation,
where binary data are collected when subjects choose one of two presented products.
It provides meaningful data when only a small number of products is investigated.
In order to handle situations with a moderate number of products the classical
procedure has been modified in many ways (e.g. Choice Based Conjoint Analysis)
leading to complex measurement situations. Furthermore often subjects nowadays
have to express how likely it is that they would choose one of a set of products.
This is certainly not a realistic shopping situation - products are either bought or
not and thus binary data should be collected for product evaluation.

Usually data in Conjoint Analysis are analysed both on individual and aggre-
gate level, i.e. all responses from one subject are first used to estimate individual
coefficients and then generalization is either done by averaging the individual re-
sults or estimating a second model for all data. This procedure has two obvious
disadvantages: (i) making multiple use of the data for modelling, (ii) modelling
multivariate data as independent observations. The estimation on individual level
indicates that there is some interest in subject variability, although the treatment
by separate models is not appropriate. Only recently some effort has been made to
model subject variability in the context of GLMs, generalized mixed linear models
(GLMM) and hierarchical Bayes modelling (Dittrich, Hatzinger & Katzenbeisser,
1998; Frühwirth-Schnatter & Otter, 1999; Green, 2000).

In this paper a well-known family of models from Item-Response-Theory (IRT),
namely the Rasch Models is used to meet the requirements of multivariate analysis
in the presence of subject variability. The focus is on paired comparisons with binary
reactions from the subjects. The Rasch Model (RM) and Linear Logistic Test Model
(LLTM) are proposed for the Scaling, the Impact and the Share Problem. The
theory is outlined and an application to data from investigations on car engine noise
is presented to illustrate the use of the approach.

2 IRT Models for data from paired comparisons

2.1 Paired Comparisons

To arrive at a more formal presentation let me introduce the following terminology:
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Table 1: Preference matrix for subject Si.

Oh

1 2 · · · h · · · m − 1 m
1 − Yi12 · · · Yi1h · · · Yi1,m−1 Yi1m Yi1.

2 Yi21 − · · · Yi2h · · · Yi2,m−1 Yi2m Yi2.

...
...

...
...

...
...

...
...

...
Og g Yig1 Yig2 · · · Yigh · · · Yig,m−1 Yigm Yig.

...
...

...
...

...
...

...
...

...
m − 1 Yi,m−1,1 Yi,m−1,2 · · · Yi,m−1,h · · · − Yi,m−1,m Yi,m−1,.

m Yim1 Yim2 · · · Yimh · · · Yim,m−1 − Yim.

Yi.1 Yi.2 · · · Yi.h · · · Yi.,m−1 Yi.m

1. Fs, s = 1, . . . , t are factors like brand or color with Cs nominal categories.

2. Oj, j = 1, . . . , m are objects, where m =
∏

s Cs for full factorial designs.

3. (Og, Oh) is a subset of (O1, . . . , Om), with g > h, and consequently k =
(

m

2

)
,

the number of possible subsets, i.e. pairs in the paired comparison procedure.

4. Si, i = 1, . . . , n is a sample of subjects.

5. Yigh, is the evaluation of (Og, Oh) by Si.

6. Xj = (Xj1, . . . , Xjp), r = 1, . . . , p, is the attribute vector of Oj, consisting of
metric and/or binary information.

In marketing research the Fs are used to generate the Oj. Many Fs and/or many Cs

per Fs lead to large m, and huge k. As a consequence paired comparison and full
factorial designs become completely impractical. As a remedy fractional designs are
applied often in combination with response surface methods. For other applications
there are no Fs and the Oj are characterized by a set of metric variables Xj. An
example is the investigation of car engine noise, where the sound recordings of a set
of cars are the Oj, and the Xj are sound characteristics expressed as functions of
the frequency spectrum.

In the paired comparison procedure all possible k pairs (Og, Oh) from a set of m
objects (Oj, j = 1, . . . , m) are presented to n subjects. Each person makes a choice
with respect to his/her preference. The data can be coded into a binary variable
Ygh = 1 if Og is preferred (Og > Oh), and Ygh = 0 if Oh is preferred (Oh > Og). Of
course the reverse coding yields the redundant variable Yhg = 1−Ygh. Table 1 gives
the preference matrix for one subject Si, which is the redundant representation of
the data.

The lower and the upper triangle have the same information and parameter
estimation is based on one of them only. The row and column sums are related by
Yig. = (m − 1) − Yi.h.
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2.2 The Bradley-Terry-Luce Model - BTLM

To model Yigh let

Yigh =

{
1 if object Og is preferred, and
0 if object Oh is preferred

}
∼ Bin(1, pgh).

Bradley & Terry (1952) and Luce (1959) proposed (1) as a model for pgh, also known
as Bradley-Terry-Luce model (BTLM):

p(Og > Oh) = p(Yigh = 1) = pgh =
τg

τg + τh

0 < τg, τh < ∞. (1)

The probability to prefer object Og over Oh is modelled as a function of the
parameters τg and τh that reflect the attractivity of the objects. For τg > τh we have
pgh > 0.5, i.e. it is more likely that Og is preferred. For τg < τh we have the reverse
situation. Thus the two objects are modelled in a concurring manner and one could
say that ”Og beats Oh” whenever τg > τh. The BTLM can be written equivalently
as

pgh =
τg/τh

1 + τg/τh

and introducing the new parameters δgh = τg/τh, letting αgh = ln δgh model (1) is
finally reformulated as

pgh =
exp(αgh)

1 + exp(αgh)
. (2)

3 IRT Models for paired comparisons

3.1 The Rasch Model - RM

In deriving model (1) we skipped the index i, i.e. the BTLM assumes that subjects
are homogeneous, which is in many situations unrealistic. In order to account for
subject variability Rasch (1960) proposed (3) as a model for data from mental tests.
Several extensions of the model allow to handle categorical, ranking and rating
data, as well as the treatment of experimental designs within the model. Fischer
and Molenaar (1995) is recommended for further reading on theory and applications
of various types of Rasch Models.

The RM can be viewed as a BTLM where instead of the comparison of two
objects, we have the comparison of one object (item) and one subject. In the BTLM
the response is modelled as function of the characteristics of two objects, whereas
in the RM it is the characteristics of a subject and an object. Consequently we now
have

Yij =

{
1 if subject Si ”beats” Item Ij, and
0 if Item Ij ”beats” subject Si

}
∼ Bin(1, pij).

The expression ”beats” is used to stress the analogy with the BTLM, where Og

”beats” Oh if Og is preferred. In mental testing of course it is better to use ”Si
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does or does not solve Ij”. Following the notation in (2) we have the probability for
subject Si solving Item Ij as

pij = p(Si > Ij) =
exp(λi + κj)

1 + exp(λi + κj)
, (3)

where λi is a parameter describing the subject’s ability to solve the item, and κj is
the easiness of item Ij.

For complete paired comparisons we have each of the k combinations of objects
presented to the n subjects. Viewing these k combinations as items, leads immedi-
ately to a RM for these data.

Let

Yigh =

{
1 if object Og is preferred by subject Si, and
0 if object Oh is preferred by subject Si

}
∼ Bin(1, pigh).

Now a Rasch model for paired comparisons is simply derived by replacing κj in (3)
with αgh from (2):

pigh = p(Og > Oh|Si) =
exp(λi + αgh)

1 + exp(λi + αgh)
. (4)

The λi account for subject variability, while the αgh reflect the easiness of the com-
bination, i.e. how easy it is to prefer object Og in the combination (Og, Oh). Of
course the αgh are only a technical quantities that have no interpretation in Conjoint
Analysis.

3.2 The Linear Logistic Test Model - LLTM

For scaling the objects and determining the impact of the product attributes we need
to know the object parameters β and the attribute parameters γ. Fischer (1972,
1983, 1995) developed a technique called the Linear Logistic Test Model (LLTM)
that allows to impose a set of linear restrictions on the item parameters of the RM.
The idea is to re-estimate the RM while κ = Qη with a known (k×q) design matrix
Q, and q < k. Thus we have sort of a regression of the k item parameters on so-
called basic parameters η. It turns out that the Scaling and the Impact problem
can be solved by using the LLTM. As the restrictions apply to the item parameters
only, the LLTM has the same subject-specific properties as the RM.

3.2.1 The Scaling LLTM

For the Scaling LLTM we have the linear restrictions

α = Cβ (5)

incorporated into (4), where C is a (k × m) matrix of known coefficients (Table 2).
The structure of C is obtained from the BTLM. Remember that δgh = τg/τh and
αgh = ln δgh = ln τg − ln τh. Replacing ln τj by βj and writing in matrix notation we
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Table 2: Design matrix for the scaling LLTM.

C =




1 −1 0 0 . . . 0 0 0
1 0 −1 0 . . . 0 0 0
1 0 0 −1 . . . 0 0 0

...
...

1 0 0 0 . . . 0 0 −1
0 1 −1 0 . . . 0 0 0
0 1 0 −1 . . . 0 0 0

...
...

0 1 0 0 . . . 0 0 −1
...

...

...
...

0 0 0 0 . . . 1 −1 0
0 0 0 0 . . . 1 0 −1
0 0 0 0 . . . 0 1 −1




arrive at α = Cβ. Thus the Scaling LLTM can be seen as a BTLM with subject
parameters. As Rank(C) = m − 1 one of the βj must be set equal to zero for
estimation.

The Scaling LLTM can be written explicitly as

pigh = p(Og > Oh|Si) =
exp[λi + (βg − βh)]

1 + exp[λi + (βg − βh)]
. (6)

3.2.2 The Impact LLTM

To determine the impact of the product attributes we need to know the attribute
parameters γ. Applying the same approach as above we impose linear restrictions
on the object parameters:

β = Xγ (7)

As a matter of fact there is no direct method to estimated the attribute parameters
γ, but replacing β in (5) with (7) we derive a different set of restrictions on α:

α = CXγ = Dγ (8)

with C as before, X (m × p), and p < k. In addition to the Scaling LLTM we
need a matrix X containing the objects attributes. The p attribute parameters can
be estimated whenever p < k and Rank(X) = p. Thus for paired comparisons p
the number of attributes can exceed m the number of objects. This is of special
interest when the objects are not generated by the attributes. The Impact LLTM
is obtained by replacing αgh in (4) with

∑
r dghrγr

pigh = p(Og > Oh|Si) =
exp(λi +

∑
r dghrγr)

1 + exp(λi +
∑

r dghrγr)
, (9)



An IRT-Approach for Conjoint Analysis 41

where ((dghr)) = D and r = 1, . . . , p.

3.3 Estimating market shares

Model (6) is taylored to extract the object attractivity parameters βj of data from
paired comparisons. For market shares we need to know p(Oj|Si) = pj, subject
to

∑
j pj = 1, rather than 0 ≤ p(Og > Oh|Si) ≤ 1 which is what we get from

model (6). Procedures of data collection where subjects choose out of m objects are
better for share estimation. The resulting categorical data are usually analysed by
discrete choice models. Rasch models for such categorical data are well developed,
but unfortunately not estimable in this situation where k = 1. The estimation
of market shares from the parameters of model (6) is therefore not straightforward.
The naive way to obtain market shares from paired comparisons is to count the times
an object Og has been preferred and divide it by the total number of responses, i.e.
p̂g =

∑
i

∑
h6=g Yigh/n(k − 1) (see Table 1). To incorporate the information from the

model one can simply replace the data Yigh by the model predictions Ŷigh. Applying
this approach leads to p̂g =

∑
i

∑
h6=g Ŷigh/n(k − 1), where Ŷigh can be obtained (i)

for the sample of subjects, (ii) for some ideal person, e.g. λ̂i = 0, or (iii) for some
distribution of λ̂i. The proposed methodology is similar to the estimation of the
share of choice (preference) in conventional Conjoint Analysis.

3.4 Parameter Estimation and Model Testing for the RM

and the LLTM

For estimating the parameters of the RM several techniques have been proposed,
applied and implemented, e.g. Maximum Likelihood (ML), Marginal ML and Con-
ditional ML. The latter is implemented in the software LPCM-Win 1.0 (available
from ProGAMMA, Groningen, NL) that is used for model estimation throughout
this paper. The Conditional ML method allows to estimate the item parameters
independently of the subject parameters. Thus we have a model that accounts for
subject variability, while the estimation technique allows to neglect it for item pa-
rameter estimation. One could say that the item parameters are estimated in the
presence of subject parameters, but without having to make any assumption about
them. Thus estimation of the item parameters is not affected by assumptions about
the subject parameters.

The RM was designed to handle the measurement problem when using mental
tests. (As a metter of fact this problem is present whenever questionaires are used.)
Therefore the assumptions of the RM refer to measurement problems and statistical
problems. The most important measurement assumption is Unidimensionality, i.e.
all items of a questionaire cover one and the same behavioural aspect. The most
important statistical assumption is (Local Stochastic) Independence, i.e. a subject’s
response to one item does not affect its response to another item. Other assumptions
concern item and subject raw scores and the so-called item characteristic curves.
Taking all assumptions together the RM turns out to be a very restrictive model.

Various procedures for detailed testing of the assumptions of the RM have been
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developed. For using the RM in Conjoint Analysis only the overall validity of the
model is assessed. The overall validity of the RM is usually tested by a Likelihood
Ratio Test (LRT). The test statistic is

T = 2(lnL1 − ln L0) ∼ χ2 with df = p1 − p0,

with p1 = k − 1 and p0 = S(k − 1), the number of estimated parameters.2 L1 is the
likelihood of the model applied to the whole data set. L0 =

∏
s Ls, where the Ls are

obtained when the model is applied to say S groups of subjects obtained from the
sample by segmenting it according to the values of criteria like raw-score or gender.
If the model is correct then the true item parameters should be the same in each
group and for the data L1 ≈ L0 should hold. The LRT is a general method for
hypotheses testing and can be applied to other problems too. Let H0 and H1 denote
hypotheses about the data, L0 and L1 the corresponding likelihoods, and p0 and p1

not necessarily depending on k the number of items. As an example consider the
LLTM with q < k. Testing the LLTM against the RM we have p0 = q, p1 = k − 1
and df ≥ 1. Therefore the LLTM is always a restriction to the RM that can be
seen as a H1 and tested by the LRT. Analogously different LLTMs can be tested
against each other as long as p0 6= p1. As the LLTM imposes restrictions on the item
parameters of the RM, we can obtain the reproduced item parameters α̂rep

gh from the

estimated parameters β̂j and γ̂r by using (5) and (8). In case of significant T it
may be interesting to get more information about the possible causes. Scatterplots
of α̂gh, the estimates of the RM, and α̂rep

gh give a detailed picture of the discrepancy
between the two models. Items that are badly reproduced can be identified and
possibly excluded from the analysis.

4 Application to data from sound design

The proposed model is applied to data from research in car engine noise.3 Here we
have the sound recording of a set of m car engines as objects, and several charac-
teristics of the sound as p > m attributes. The research task was to identify and
quantify the objective sound characteristics that are driving the subjective judge-
ments. For m = 12 car engine noises we had a group of n = 52 subjects making
judgements using the paired comparison method. The data were collected in a ac-
coustic laboratory. The complete combination yields k = 66 pairs of noises. For 12
combinations almost all subjects preferred the same object. As a consequence we
obtain |β̂| → ∞ and also var(β̂) → ∞ for these items, which makes them worthless
for further analysis. These items contain no information about the parameters and
they were therefore excluded from the analysis. The final set consists of k = 54
informative items. In fact any subset of the items that guarantees a minimum of
connectedness in the data will suffice to estimate the βj, although the precision of
the estimates may not be satisfying.

2For identifiability the parameters have to be constrained, e.g. by letting κ1 = 0 or
∑

j κj = 0.
Therefore only k − 1 parameters are estimated.

3The author wishes to thank Franz Brandl and Wolfgang Stücklschwaiger from AVL List
GesmbH for making the data available.
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Table 3: Some details of the estimated models.

Estimated Number of
Model n Parameters Parameters ln L
RM 52 αgh 53 -1449.64
RM1 29 αgh 53 - 879.69
RM2 23 αgh 53 - 537.78
Scaling LLTM 52 βj 11 -1477.26
Impact LLTM 52 γr 9 -1478.90

Table 4: Likelihood Ratio Tests.

Test T df χ2

95

RM vs. (RM1,RM2) 64.3 53 70.9
RM vs. Scaling LLTM 55.2 42 58.1
RM vs. Impact LLTM 58.5 44 60.4

4.1 Model estimation

Table 3 gives the log-likelihood and some more details of the estimated models. The
abbreviations RM1 and RM2 refer to models estimated for subjects with low (1) and
high (2) raw scores.

Table 4 gives the results of the model tests. For the first test the likelihoods were
obtained for a split by the mean of the subject raw scores. This is the standard
procedure to test the validity of the RM. Of course all raw scores for the RM in
this application are only of technical importance. In the consequent lines we see the
results for the tests of the Scaling and the Impact LLTM. For the Impact LLTM
there were a total of 39 attributes available, here variables related to the frequency
spectrum of the noise. It turned out that some were strictly linear dependend, while
other were of limited interest, so that finally we had 9 variables in X.4

Comparing the test statistic T with the critical value χ2

95
for significance level

α = 0.05 we find that all LRT in Table 4 are not significant. Therefore the RM, the
Scaling LLTM and the Impact LLTM are considered valid models for the data.

Figure 1 and Figure 2 show scatterplots of α̂gh and α̂rep
gh for the Scaling and the

Impact LLTM. The reproduced item parameters are quite close to the estimates
from the RM.

4A technical remark: In general the design matrix Q of an LLTM can take on real values. For
the use with the software LPCM-Win 1.0 it is strongly recommended to transform the columns
of Q to the unit interval [0, 1]. When using the data just as they were generated, the program
did not converge, even though it stated ”Weight matrix has full column rank” and ”Data are
well-conditioned”, while convergence was no problem after transformation to the unit interval.
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Figure 1: Scatterplot of item parameters from the RM and the Scaling LLTM.
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Figure 2: Scatterplot of item parameters from the RM and the Impact LLTM.

4.2 Model application

The results of the model estimation are here used to get the preference scale and
the market shares of the products. The estimation of the market shares has no
interpretation for the data used in this application and is only performed to illus-
trate the methodology. To make the effect of modelling subject variability visible
results from conventional Conjoint Analysis are also included for comparison. In
standard software packages like SPSS, there is no built-in handling of binary data
within Conjoint Analysis. Taking the conventional approach to the situation with
binary data leads to a logistic regression model (LogReg). For the estimation of
the object parameters we have a design matrix X with dummy variables only. For
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the estimation of the attribute parameters there may be metric variables. Figure 3
and Figure 4 show the scaling of the 12 car engines as obtained from RM and LogReg.

-�

8
-0.5 0.0 0.5 1.0 1.5 2.0

6 6 66 666 66 666
1 2 34 567 89 10
11

12

Figure 3: The preference scale for the 12 car engines as estimated by the Scaling

LLTM.
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Figure 4: The preference scale for the 12 car engines as estimated by Logistic

Regression.

On a rather coarse grid there is some similarity in the two scales, but a closer
look reveals substantial differences in the distances between the objects as well as in
the ordering of the objects. Object 10 is scaled just below object 5 by the Logistic
Regression, while it is far above object 5 on the scale from the IRT model. Object
12 is clearly the least attractive on the LogReg scale while it is close to object 7
on the other scale. The objects 1, 7, 8, 9, 11 and 12 close together on the IRT
scale while objects 1 and 12 are clearly separated from the rest of the group on the
LogReg scale. Moreover within this group the ordering of the objects 8, 9 and 11 is
reversed.

As some of the items have been skipped from the analysis, there is less informa-
tion for the objects 7-11. This has a substantial effect on the share estimates and
therefore the outlined approach is not applicable to this reduced data set. To get
share estimates all items that involved objects 7-11 were discarded and the analysis
was repeated with the remaining k = 21 items. The share estimates for λi = 0
are given in Table 5. We have parameter estimates from two models5 (RM and
Scaling LLTM) and also two share estimates. We see that the RM-based and the
LLTM-based estimates are almost identical. Also contained in Table 5 are the naive
estimates from the frequencies and the estimates from Logistic Regression. The
naive estimates and the LogReg estimates have also some similarity, but give quite
a different picture of the ”market situation” when compared to the RM and the
LLTM estimates. Of special concern are the objects 1, 5, 6, and 12. The most
striking results are those for object 12. Assume that objects 1-6 were products

5For the design matrix of the Impact LLTM the software LPCM-Win 1.0 did not converge.
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Table 5: Estimated market shares for 7 objects, see text.

Car engine LLTM RM Naive LogReg
1 17.77% 16.88% 9.62% 9.87%
2 23.69% 23.38% 20.05% 19.95%
3 21.12% 21.49% 20.60% 21.38%
4 15.00% 15.05% 15.11% 10.28%
5 12.72% 12.90% 16.03% 16.78%
6 7.82% 8.26% 12.55% 14.96%
12 1.79% 2.03% 6.04% 6.78%

already present on the market and that the launch performance of object 12 was in-
vestigated. The estimated share of 6-7% from conventional Conjoint Analysis would
clearly indicate a positive performance of object 12, while the shares of about 2%
from the IRT approach would certainly lead to a redesign or even dropping of object
12.

The obvious explanation for the observed differences between conventional Con-
joint Analysis and the IRT-approach is, that accounting for subject variability can
have a substantial effect on the results of the data analysis and as a matter of fact
on the decisions based on such results.

4.3 Conclusion

The proposed IRT-based methodology for Conjoint Analysis with binary data from
paired comparisons has the advantage of accounting for subject variability. The
conditional ML approach allows to estimated the item parameters without having
to make assumptions about the subject parameters. This is a crucial difference to
other approaches like hierarchical Bayes models or GLMM.

Despite the fact that the RM is a very restrictive model for data we find that
product evaluation is a promising area for applying this model. Especially the
assumption of unidimensionality seems to be appropriate for product evaluation.
When compared to solving mental tests it is obvious that product evaluation is a
much simpler task and therefore the evoked mental processes are likely to have a
simple structure that may well be covered by the unidimensionality assumption.
Furthermore unidimensionality means that the items refer to one and the same
behavioural aspect. This is also easier to fulfill in product evaluation than in mental
testing.

In the application of the model to data from car engine noise investigation sub-
stantial differences compared to conventional Conjoint Analysis were observed. The
preference scale of the objects and the market share estimates differed markedly.
It is believed that the estimates from the IRT models are more reliable than those
from conventional CA, and that the proposed approach makes a better basis for
marketing decisions. As a matter of fact this believe cannot be examined within the
present paper but this should be done in future marketing research.
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