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Stochastic Preference and Group Decision

LavoslavCaklovic!

Abstract

In this article a notion of stochastic flow associated tolsastic preference is in-
troduced. Itis proved that stochastic flow is a consistemt fl@nd only if stochastic
preference is consistent. If both of them are consistestfldw and the stochastic
preference, then, the normal integral of the flow is the lidgar of value function
associated to stochastic preference flow. This means thatahintegral of stochas-
tic preference flow, which always exists, can be considesed generalization of
ordinal value function in that context. It is also provedtttidlow preference is a
weak preference order, then, normal integral of unimodstiachastic flow is a value
function.

This approach is applied to the data obtained from a web ignestre when
students were asked to give preference flows for certaieriaiover the set of their
lecturers. In that case the stochastic flow and the group flemegte equivalent
ranking. Finally, we calculated the Condorcet’s flow and&ggs value function
associated to its unimodular flow. The ranking obtained f@amdorcet’s flow is
not equivalent to ranking obtained from stochastic flow.

In this article we show that stochastic flow and group flow fil©aklovic (2003b)
generate equivalent ranking (see Tables 2 and 3). That ntiearis situations when
only rating is the aim of the experiment one can organize attprenaire to collect
data only for stochastic flow, i.e. using the scalk 0, 1. This is less time consuming
than giving strength of a preference for each pair of altares.

1 Introduction

Let us denote bys = {a,b,c, ...} a finite set of alternatives. The classical approach to
stochastic preference can be found in French (1986). THagois as follows:

To each pair of alternative, b), a decision maker assigns probability,

of choosinga when the choice betweenandb is offered. We assume that
Pab + Pre = 1, With conventiorp,, = % We say that is stochastically more
preferable tham if p,, > % A binary relation obtained in such a way we call
stochastic preference, let us denote itihy

The question is which condition should satisfy numbejsto generate a
value functionV on the set of alternatives, i.e. so that

b > 5 5 V() 2 VD) (1.1)
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Theorem 1 (French, 1986, p.101) et us suppose that,; # 0, Va, b. If stochastic pref-
erence satisfies
Pab Pic _ Pac (1.2)
Poa  Deb Pca
forall a, b, c € S thenP is necessarily a weak preference order.

Sketch of the proofChoose any: € S and forb € S define

_ Pha
ﬂw_m. (1.3)

Then, (1.2) implieg. = ;2% and

bPc < f(b) = f(c)

which means thaf is a value function forP. Transitivity of P is now evident. O
Let us consider the following weighted directed grdph.4) over the set of alterna-
tives as vertices. For each pdir, b} of alternatives an ara = (c,b) € A is defined if

Do > & with the weight
Fo = log e, (1.4)
Peb
where the logarithm is taken with respect to some base 1. Evidently 7, > 0, for
each arax € A. Flow F : A — R defined by (1.4) is called stochastic flow. A is a

complete flow (defined for all pairs) then, matéxdefined by

F. = f(ab), if (C, b) ceA b#c
Fye = =Fpe), if (b,c) € A, b#c
F..=0,VceS

is antisymmetric matrix called flow matrix.

Lemma 2 Stochastic flowF : A — R defined by(1.4) is potential difference if and only
if stochastic preference satisfies (1.2).

Proof. Let us suppose relation (1.2) and denate- (¢, b) an arc. Because of (1.2) and
(1.3)
]& - pba/pab _ f(b)

Deb B pca/pac f(C)
which implies thatF,, is a potential difference of the form

Fo =log f(b) — log f(c). (1.5)

Presuming now thaf is potential difference

Fo =X (b) — X(c)
for each arax = (¢, b) for some potentiak : S — R, then, evidently

Fy+ Fy = Fa (1.6)
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for eachf = (c¢,a) andy = (a,b) such thats + v = «. If we definef by X(c¢) =:
log f(c), Ve € S then, (1.6) is equivalent to

f0) fla) _ fb)

fla) fle)  fle)
which is, on the other hand, equivalent to (1.2). This prdliedemma. O

Because of equation (1.6) we can now define a consistent flawigfa potential
difference i.e. if there exists a potentiglsuch that

BX = F. (1.7)

This means that potenti&l is defined for consistent flow. The following definition ex-
tends a notion of potential for any flow.

Definition 3 A solutionX of normal equation associated (b.7)
B'BX =B"F, ) X;=0 (1.8)
€S
we call normal integral ofF. If F is stochastic flow then, we caN stochastic normal
integral of F.

2 Complete stochastic flow

Now we are going to calculate normal integral of a compleatetsstic flow, i.e. all pairs
of alternatives are being compared. Let us rewrite the ftanfor weight functionw,
formula (15) fromCaklovi¢ (2003a), where: is the base of logarithmic function in (1.4)

w, =m™e, VaeS. (2.1)

We can normalize it to obtain 1-sum ranks if necessary. Usuation (2) inCaklovi¢
(2003a) we can simply calculate

1
Xo== Fa (2.2)
n
b#a

1
= Z(logpab — 10g pra)
b#a

1 Zl Dab
= — Og—
n b£a DPoa

e (I%)

b#a

3=

and the weight of the nodeis, by formula (2.1),

Wy = (HZﬂ)n. (2.3)

b£a DPoa

The expression will be used later on.
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3 The main result

A consistency condition (1.2) is a sufficient condition foradue function existence asso-
ciated to stochastic preference. If this is not the casestth@hastic flow still makes sense
and its normal integral induces a group ranking given by fdenf2.3).

Normal integral of a given flow is not a value function in gealeEven the question if
itis doesn’t makes sense. A correct question is whether alantegral of the unimodular
flow of a given flow is a value function or not, where by unimaulow of a flowF we
mean the flow with valuesign . This unimodular flow can be considered as an binary
relation on the set of vertices, we call it flow preferencefofwhich in general, is not
transitive. Next theorem, which seems not to be known initbeature, gives the answer.

Theorem 4 Let F be a complete unimodular flow ansits flow preference defined by
a&b@f(b@)zo, a#b

with conventioru 3= a, Va € S. If relation >= is transitive then, the normal integral of
F is a value function, i.e. consistent within the sense

ax=be X(a)—X(b) >0. (3.1)
Proof. Let us denote by the strict preference relation defined by
a>b<s ax=bandb ¥ a,
and by~ equivalence relation defined by
a~b<s ax=bandb = a.
From the formula (2.2) it is easy to see that
n-X(@)=#{yeS|lz-yt-—#yeS|y>a} (3.2)

and
n-X(x) =2V(x) — #[z] — 45

where[z] denotes equivalence classuof.e.
[z] :={y € S|y~a}.

If y ~ x then[z] = [y] andV (z) = V(y) which impliesX (z) = X(y). Let us suppose
now thatr > y,i.e.xz = y iz 4 y. Then,

n- (X(z) = X(y) =V(z) = V(y) + V(z) — #z] — (V(y) — #[y])
> V(x) — #[z] — (V(y) — #y])
=#{zeS|x=z} —H#{z€ 5|y >z},

using transitivity of- and the fact that > y we obtain

X(x) - X(y) > 0.
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This proves
vry = X(2) > X(y). (3.3)

To complete the proof we have to prove the implicatiotw) > X (y) = = = v.

Let us suppose thaX' (z) > X(y) andy > x= for somez,y € S. Because of (3.3)
we conclude thak (y) > X (z), andy + x implies X (y) > X (x) which contradicts the
supposition. This proves the implication and the theorem. O

Corollary 5 If stochastic preference is a weak preference then, norntagral of asso-
ciated unimodular stochastic flow is a value function, isisies(3.1).

If instead of unimodular flow we consider (weighted) sto¢itaffow it may happen that
normal integral will not be consistent with underlying westiochastic preference. It
would be interesting to find a necessary condition, in terfns,Q so that normal integral
of stochastic flow is a value function.

4 Atestexample

In the sequelz denotes a group of decision makers;= #G, and S denotes the set
of alternatives, candidates in election process. Let usnasghat each decision maker
has three possibilities when faced with opportunity to cteleor b from pair {a, b} of
alternatives:

e selecta,
e selecth,
e express his indifference.

After the process of election had finished we had the follgwinmbers:

gral(a) = #{g € G | g selected a}
gva(b) = #{g € G | g selected b}
iva = #{g € G | g is indifferent between a and b}.

Furthermore, we define

fun(a) = g0a(@) + e
fba(b) - gba(b) + %iba
)

Pba = #G .

Obviouslypy, + ps»y = 1 and we can define a stochastic fldwby formula (1.4).

In this example a group of 48 students were asked to givengrate flows over the set
S of their lecturers. The experiment was organized at the Beyeat of Psychology of
University of Zagreb. First, the students made pairwiseganisons of criteria (teaching
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Table 1: Stochastic flow from the example.

:File:stochast.txt
[General_section] Project=Ranking

[Levels_section] levell=group,1
level3=Morgan::Charm::Jones::
Flint::Mohamad::Kekonnen::Moore::Beaute

[Flow_section]

[levell>group?level3]

Morgan::Charm = -1.40148452661387
Morgan::Jones = -0.0180185055026783
Morgan::Mohamad = 1.28093384546206
Morgan::Kekonnen = 0.269476107955208
Morgan::Moore = -0.856050651496798
Morgan::Beaute = -1.37020822336827
Morgan::Flint = -1.3066767331552
Charm::Jones = 1.14770189886463
Charm::Mohamad = 3.41538201665411
Charm::Kekonnen 1.31463837221346
Charm::Moore = 0.322773392263051
Charm::Beaute= -0.184192464729766
Charm::Flint= -0.314493329902438
Jones::Mohamad = 1.16074406977512
Jones::Kekonnen = 0.296265816143172
Jones:.:Moore = -0.76432345902784
Jones:.Beaute = -1.22644566017799
Jones::Flint = -0.828692672556169
Mohamad::Kekonnen = -0.782274960455953
Mohamad::Moore = -1.88454120267902
Mohamad::Beaute = -2.73002910782099
Mohamad::Flint = -1.62113395219729
Kekonnen::Moore = -1.09861228866811
Kekonnen::Beaute = -1.59685913022724
Kekonnen::Flint = -0.896746135801185
Moore::Beaute = -0.677398823591806
Moore::Flint = -0.668249628938218
Beaute::Flint = 0.184192464729766
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Table 2: Ranking from original data.

NAME GROUP WEIGHT | UNIM. WEIGHT
V. Mohamad 0.243 0.168
L. Kekonnen 0.171 0.141
A. Morgan 0.149 0.138
G. Jones 0.142 0.132
A. V. Moore 0.092 0.114
N. Flint 0.072 0.104
D. Charm 0.069 0.102
P. Beaute 0.062 0.100
Inconsistency (deg 10.17 12.17

Table 3: Ranking from stochastic flow.

NAME STOCH. WEIGHT | SAVAGE

V. Mohamad 0.319 8

L. Kekonnen 0.157 7

A. Morgan 0.140 6
G. Jones 0.130 5

A. V. Moore 0.081 4

N. Flint 0.065 2]
D. Charm 0.056 37
P. Beaute 0.052 1
Inconsistency (deg 12.41

gualities, professional competence, lecturers’ attitimeards students) on the scale 0-
1-2-3-4. Second, they gave their preferences, on the sdieohatives, for each criteria
using the same scale. Potential method was used to caltiedeoup flow (or consensus
flow) and appropriate ranks. The results are given in Tablé&kl@vi(’:, 2003b) and the
columnGROUP WEIGHTIN Table 2 bellow is reprinted from that table.

Stochastic flow is obtained using the same data simply byetorg the strength in
individual preferences given by each group member and ledsiusing above formulas.
The question is whether the stochastic normal integrallamdérmal integral of weighted
consensus flow gives different ranking. The answer is nolaadasult is shown in column
STOCH. WEIGHT in Table 3. This column and the colunBROUP WEIGHTIn Table 2
gives the same ranking.

As we have already said, the original data (for each studeas follows:
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1. preference flow on the set of criteria,
2. preference flow on the set of alternatives for each caiteri

Stochastic flow construction, as we have pointed out, takBspriority, not its strength.

It is also interesting to compare rankings obtained fromuthienodular flow of the group
flow and stochastic preference flow; generally they are miffe When taking unimod-
ular flow of the group preference flow we first take consensdstlaen forget its weight
whereas with stochastic preference flow we consider thepmete without its strength
first, of each decision maker, and only after that we caleutahsensus flow.

It is interesting to compare the rankings obtained at theagéméch process. Ranking
obtained from unimodular consensus flow is given in Tablery§. WEIGHT) and the
ranking obtained from stochastic flow is given in Tables3@CH WEIGHT). They are
equivalent (in our example) and they are equivalent to granging obtained from nor-
mal integral of group preference flow. In general, they arteegoivalent and it is easy to
find a counterexample.

Let us explain the numbers in the colureavAGE of Table 3. The unimodular flow
of the stochastic preference flow represents a weak prefenefation:= on the set of
alternatives. This can be seen from data given in Table ladgges value function is then
defined by

V(a)=#{be S|a=b}. (4.1)

The arrows] or |, in the table, denote that an alternative got a better orevposition
when compared with stochastic rank. Generally speakirgrbt true that a given flow
generates a weak preference, as it is the situation withchastic flow in our example,
see Theorem 4.

The stochastic flow is given on page 130. It can be downloaaed internet address

http://www.math.hr/"caklovic/Decision/Download/stoc hastic.txt
and saved on your local disc. After doing that, you can sthg program
http://decision.math.hr/decision/remote.pl and upload, now local, file
stochastic.txt from your local disk, using the above interface, the secaidron

in Table 3 can be checked too.

4.1 Condorcet's flow

The value of Condorcet’s flow, on the atc= (b, a), is defined as
JTC(Q) = U(ba a) - U(a’a b)

wherev(b, a) denotes the number of voters that prefergainst.

The Condorcet’s flow is given on page 134 and it's normal irgkig given in Table
4, columnc. POTENTIAL. In columnSAVAGE we also calculated the value function
generated by unimodular flow of Savage’s flow. It can be ndtiteat it is equivalent
to rankingr generated by. WEIGHT, i.e.R o V™! is a strictly increasing function. The
arrows] or | have the same meaning as in Table 3.

Unimodular flow of the Condorcet’s flow generates a weak pesfee relation and
values of Savage’s value functiohassociated to that weak preference are given in col-
umn SAVAGE, Table 4. Theorem 4 claims that Condorcet’s ranks, obtaoyeEM, and
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Savage’s value function are equivalent that can be seentfretable, columns. RANKS
andsSAVAGE.

Table 5: Ranking from Condorcet’s flow.

NAME ST. RANKS | C. RANKS | C. POT. | C. WEIGHT (R) | SAVAGE (V)

V. Mohamad 1 2 18.18 0.235] 710
L. Kekonnen 2 1 22.13 0.2767 87
A. Morgan 3 4 —0.13 0.093] 4|
G. Jones 4 3 13.63 0.1827 617
A. V. Moore 5 5 —0.63 0.091 5

N. Flint 6 8 —26.75 0.025] 1]
D. Charm 7 6 —12.75 0.0507 37
P. Beaute 8 7 —14.38 0.0467 27

In the columnsT. RANKS of Table 4 ranking according to stochastic flow is given.
In columnc. POT. normal integral of Condorcet’s flow is given according taaton
(2.1). Evidently, Condorcet’s ranks.(RANKS) and stochastic rankst{. RANKS) are not
equivalent.

5 Conclusion

In the test example the original group weight and stochaggtight are equivalent (see
Tables 2 and 3). This means that instead of asking each grempber for his prefer-
ence flow it is sufficient to ask him about the alternative heegipreference to, without
specifying the weight of the preference. A fine analysis ougrdecision, such as group
clustering is not possible in that case, &aklovic (2003) for details.
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Table 5: Stochastic flow from the example.

;File: Condorcet.txt

[General_section] Project=Ranking

[Levels_section] levell=group,1

level3=Morgan::Charm::Jones::Flint::Mohamad::Kekonn en::
Moore::Beaute

[Flow_section] [levell>group?level3] Morgan::Charm=-1 9

Morgan:
Morgan::
Morgan::
Morgan::
Morgan::
Morgan::
:Jones=31
Charm::
Charm::
:Moore=11
:Beaute=-2
‘Flint=-27

Charm:

Charm:
Charm:
Charm:

:Jones=19
Mohamad=26
Kekonnen=31
Moore=1
Beaute=-22
Flint=-35

Mohamad=35
Kekonnen=35

Jones::Mohamad=11
Jones::Kekonnen=12
Jones::Moore=-16
Jones::Beaute=-32
Jones::Flint=-34
Mohamad::Kekonnen=5
Mohamad::Moore=-21
Mohamad::Beaute=-30
Mohamad::Flint=-33
Kekonnen::Moore=-25
Kekonnen::Beaute=-33
Kekonnen::Flint=-36
Moore::Beaute=-13
Moore::Flint=-32

Beaute:

‘Flint=-17



