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Stochastic Preference and Group Decision

LavoslavČaklovíc1

Abstract

In this article a notion of stochastic flow associated to stochastic preference is in-
troduced. It is proved that stochastic flow is a consistent flow if and only if stochastic
preference is consistent. If both of them are consistent, the flow and the stochastic
preference, then, the normal integral of the flow is the logarithm of value function
associated to stochastic preference flow. This means that normal integral of stochas-
tic preference flow, which always exists, can be considered as a generalization of
ordinal value function in that context. It is also proved that if flow preference is a
weak preference order, then, normal integral of unimodularstochastic flow is a value
function.

This approach is applied to the data obtained from a web questionnaire when
students were asked to give preference flows for certain criteria over the set of their
lecturers. In that case the stochastic flow and the group flow generate equivalent
ranking. Finally, we calculated the Condorcet’s flow and Savage’s value function
associated to its unimodular flow. The ranking obtained fromCondorcet’s flow is
not equivalent to ranking obtained from stochastic flow.

In this article we show that stochastic flow and group flow fromČaklović (2003b)
generate equivalent ranking (see Tables 2 and 3). That meansthat in situations when
only rating is the aim of the experiment one can organize a questionnaire to collect
data only for stochastic flow, i.e. using the scale−1, 0, 1. This is less time consuming
than giving strength of a preference for each pair of alternatives.

1 Introduction

Let us denote byS = {a, b, c, . . .} a finite set of alternatives. The classical approach to
stochastic preference can be found in French (1986). The problem is as follows:

To each pair of alternatives(a, b), a decision maker assigns probabilitypab

of choosinga when the choice betweena andb is offered. We assume that
pab + pba = 1, with conventionpaa = 1

2
. We say thata is stochastically more

preferable thanb if pab ≥
1
2
. A binary relation obtained in such a way we call

stochastic preference, let us denote it byP .

The question is which condition should satisfy numberspab to generate a
value functionV on the set of alternatives, i.e. so that

pab ≥
1

2
⇔ V (a) ≥ V (b). (1.1)
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Theorem 1 (French, 1986, p.101)Let us suppose thatpab 6= 0, ∀a, b. If stochastic pref-
erence satisfies

pab

pba

·
pbc

pcb

=
pac

pca

(1.2)

for all a, b, c ∈ S thenP is necessarily a weak preference order.

Sketch of the proof.Choose anya ∈ S and forb ∈ S define

f(b) :=
pba

pab

. (1.3)

Then, (1.2) impliespbc = f(b)
f(b)+f(c)

and

bP c ⇔ f(b) ≥ f(c)

which means thatf is a value function forP . Transitivity ofP is now evident. �

Let us consider the following weighted directed graph(S,A) over the set of alterna-
tives as vertices. For each pair{c, b} of alternatives an arcα = (c, b) ∈ A is defined if
pbc ≥

1
2

with the weight

Fα := log
pbc

pcb

, (1.4)

where the logarithm is taken with respect to some basem > 1. EvidentlyFα ≥ 0, for
each arcα ∈ A. Flow F : A → R defined by (1.4) is called stochastic flow. IfF is a
complete flow (defined for all pairs) then, matrixF defined by

Fbc := F(c,b), if (c, b) ∈ A, b 6= c

Fbc := −F(b,c), if (b, c) ∈ A, b 6= c

Fcc := 0, ∀c ∈ S

is antisymmetric matrix called flow matrix.

Lemma 2 Stochastic flowF : A → R defined by(1.4) is potential difference if and only
if stochastic preferenceP satisfies (1.2).

Proof. Let us suppose relation (1.2) and denoteα = (c, b) an arc. Because of (1.2) and
(1.3)

pbc

pcb

=
pba/pab

pca/pac

=
f(b)

f(c)

which implies thatFα is a potential difference of the form

Fα = log f(b) − log f(c). (1.5)

Presuming now thatF is potential difference

Fα := X(b) − X(c)

for each arcα = (c, b) for some potentialX : S → R, then, evidently

Fγ + Fβ = Fα (1.6)
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for eachβ = (c, a) andγ = (a, b) such thatβ + γ = α. If we definef by X(c) =:
log f(c), ∀c ∈ S then, (1.6) is equivalent to

f(b)

f(a)
·
f(a)

f(c)
=

f(b)

f(c)
,

which is, on the other hand, equivalent to (1.2). This provesthe lemma. �

Because of equation (1.6) we can now define a consistent flow ifit is a potential
difference i.e. if there exists a potentialX such that

BX = F . (1.7)

This means that potentialX is defined for consistent flow. The following definition ex-
tends a notion of potential for any flow.

Definition 3 A solutionX of normal equation associated to(1.7)

BτBX = BτF ,
∑

i∈S

Xi = 0 (1.8)

we call normal integral ofF . If F is stochastic flow then, we callX stochastic normal
integral ofF .

2 Complete stochastic flow

Now we are going to calculate normal integral of a complete stochastic flow, i.e. all pairs
of alternatives are being compared. Let us rewrite the formula for weight functionw,
formula (15) fromČaklović (2003a), wherem is the base of logarithmic function in (1.4)

wa = mXa , ∀a ∈ S. (2.1)

We can normalize it to obtain 1-sum ranks if necessary. Usingequation (2) inČaklović
(2003a) we can simply calculate

Xa =
1

n

∑

b6=a

Fab (2.2)

=
1

n

∑

b6=a

(log pab − log pba)

=
1

n

∑

b6=a

log
pab

pba

= log

(

∏

b6=a

pab

pba

)

1
n

.

and the weight of the nodea is, by formula (2.1),

wa =

(

∏

b6=a

pab

pba

)

1
n

. (2.3)

The expression will be used later on.
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3 The main result

A consistency condition (1.2) is a sufficient condition for avalue function existence asso-
ciated to stochastic preference. If this is not the case, thestochastic flow still makes sense
and its normal integral induces a group ranking given by formula (2.3).

Normal integral of a given flow is not a value function in general. Even the question if
it is doesn’t makes sense. A correct question is whether normal integral of the unimodular
flow of a given flow is a value function or not, where by unimodular flow of a flowF we
mean the flow with valuessignF . This unimodular flow can be considered as an binary
relation on the set of vertices, we call it flow preference ofF , which in general, is not
transitive. Next theorem, which seems not to be known in the literature, gives the answer.

Theorem 4 LetF be a complete unimodular flow and< its flow preference defined by

a < b ⇔ F(b,a) ≥ 0, a 6= b

with conventiona < a, ∀a ∈ S. If relation < is transitive then, the normal integralX of
F is a value function, i.e. consistent with< in the sense

a < b ⇔ X(a) − X(b) ≥ 0. (3.1)

Proof. Let us denote by≻ the strict preference relation defined by

a ≻ b ⇔ a < b andb 6< a,

and by∼ equivalence relation defined by

a ∼ b ⇔ a < b andb < a.

From the formula (2.2) it is easy to see that

n · X(x) = #{y ∈ S | x ≻ y} − #{y ∈ S | y ≻ x} (3.2)

and
n · X(x) = 2V (x) − #[x] − #S

where[x] denotes equivalence class ofx i.e.

[x] := {y ∈ S | y ∼ x}.

If y ∼ x then[x] = [y] andV (x) = V (y) which impliesX(x) = X(y). Let us suppose
now thatx ≻ y, i.e.x < y i x 6∼ y. Then,

n ·
(

X(x) − X(y)
)

= V (x) − V (y) + V (x) − #[x] − (V (y) − #[y])

> V (x) − #[x] − (V (y) − #[y])

= #{z ∈ S | x ≻ z} − #{z ∈ S | y ≻ z},

using transitivity of≻ and the fact thatx ≻ y we obtain

X(x) − X(y) ≥ 0.
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This proves
x < y ⇒ X(x) ≥ X(y). (3.3)

To complete the proof we have to prove the implicationX(x) ≥ X(y) ⇒ x < y.
Let us suppose thatX(x) ≥ X(y) andy ≻ x for somex, y ∈ S. Because of (3.3)

we conclude thatX(y) ≥ X(x), andy 6∼ x impliesX(y) > X(x) which contradicts the
supposition. This proves the implication and the theorem. �

Corollary 5 If stochastic preference is a weak preference then, normal integral of asso-
ciated unimodular stochastic flow is a value function, i.e. satisfies(3.1).

If instead of unimodular flow we consider (weighted) stochastic flow it may happen that
normal integral will not be consistent with underlying weakstochastic preference. It
would be interesting to find a necessary condition, in terms of pab, so that normal integral
of stochastic flow is a value function.

4 A test example

In the sequelG denotes a group of decision makers,n := #G, andS denotes the set
of alternatives, candidates in election process. Let us assume that each decision maker
has three possibilities when faced with opportunity to select a or b from pair {a, b} of
alternatives:

• selecta,

• selectb,

• express his indifference.

After the process of election had finished we had the following numbers:

gba(a) = #{g ∈ G | g selected a}

gba(b) = #{g ∈ G | g selected b}

iba = #{g ∈ G | g is indifferent between a and b}.

Furthermore, we define

fba(a) = gba(a) +
1

2
iba

fba(b) = gba(b) +
1

2
iba

pba =
fba(b)

#G
.

Obviouslypba + pab = 1 and we can define a stochastic flowF by formula (1.4).
In this example a group of 48 students were asked to give preference flows over the set

S of their lecturers. The experiment was organized at the Department of Psychology of
University of Zagreb. First, the students made pairwise comparisons of criteria (teaching
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Table 1: Stochastic flow from the example.

--------------------------------------------------- -------------
;File:stochast.txt

[General_section] Project=Ranking

[Levels_section] level1=group,1
level3=Morgan::Charm::Jones::

Flint::Mohamad::Kekonnen::Moore::Beaute

[Flow_section]
[level1>group?level3]
Morgan::Charm = -1.40148452661387
Morgan::Jones = -0.0180185055026783
Morgan::Mohamad = 1.28093384546206
Morgan::Kekonnen = 0.269476107955208
Morgan::Moore = -0.856050651496798
Morgan::Beaute = -1.37020822336827
Morgan::Flint = -1.3066767331552
Charm::Jones = 1.14770189886463
Charm::Mohamad = 3.41538201665411
Charm::Kekonnen = 1.31463837221346
Charm::Moore = 0.322773392263051
Charm::Beaute= -0.184192464729766
Charm::Flint= -0.314493329902438
Jones::Mohamad = 1.16074406977512
Jones::Kekonnen = 0.296265816143172
Jones::Moore = -0.76432345902784
Jones::Beaute = -1.22644566017799
Jones::Flint = -0.828692672556169
Mohamad::Kekonnen = -0.782274960455953
Mohamad::Moore = -1.88454120267902
Mohamad::Beaute = -2.73002910782099
Mohamad::Flint = -1.62113395219729
Kekonnen::Moore = -1.09861228866811
Kekonnen::Beaute = -1.59685913022724
Kekonnen::Flint = -0.896746135801185
Moore::Beaute = -0.677398823591806
Moore::Flint = -0.668249628938218
Beaute::Flint = 0.184192464729766
--------------------------------------------------- -------------
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Table 2: Ranking from original data.

NAME GROUP WEIGHT UNIM . WEIGHT

V. Mohamad 0.243 0.168

L. Kekonnen 0.171 0.141

A. Morgan 0.149 0.138

G. Jones 0.142 0.132

A. V. Moore 0.092 0.114

N. Flint 0.072 0.104

D. Charm 0.069 0.102

P. Beaute 0.062 0.100

Inconsistency (deg) 10.17 12.17

Table 3: Ranking from stochastic flow.

NAME STOCH. WEIGHT SAVAGE

V. Mohamad 0.319 8

L. Kekonnen 0.157 7

A. Morgan 0.140 6

G. Jones 0.130 5

A. V. Moore 0.081 4

N. Flint 0.065 2 ↓

D. Charm 0.056 3 ↑

P. Beaute 0.052 1

Inconsistency (deg) 12.41

qualities, professional competence, lecturers’ attitudetowards students) on the scale 0-
1-2-3-4. Second, they gave their preferences, on the set of alternatives, for each criteria
using the same scale. Potential method was used to calculatethe group flow (or consensus
flow) and appropriate ranks. The results are given in Table C (Čaklović, 2003b) and the
columnGROUP WEIGHTin Table 2 bellow is reprinted from that table.

Stochastic flow is obtained using the same data simply by forgetting the strength in
individual preferences given by each group member and calculated using above formulas.
The question is whether the stochastic normal integral and the normal integral of weighted
consensus flow gives different ranking. The answer is no and the result is shown in column
STOCH. WEIGHT in Table 3. This column and the columnGROUP WEIGHT in Table 2
gives the same ranking.

As we have already said, the original data (for each student)is as follows:
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1. preference flow on the set of criteria,

2. preference flow on the set of alternatives for each criteria.

Stochastic flow construction, as we have pointed out, takes only priority, not its strength.
It is also interesting to compare rankings obtained from theunimodular flow of the group
flow and stochastic preference flow; generally they are different. When taking unimod-
ular flow of the group preference flow we first take consensus and then forget its weight
whereas with stochastic preference flow we consider the preference without its strength
first, of each decision maker, and only after that we calculate consensus flow.

It is interesting to compare the rankings obtained at the endof each process. Ranking
obtained from unimodular consensus flow is given in Table 2 (UNIM . WEIGHT) and the
ranking obtained from stochastic flow is given in Table 3 (STOCH. WEIGHT). They are
equivalent (in our example) and they are equivalent to groupranking obtained from nor-
mal integral of group preference flow. In general, they are not equivalent and it is easy to
find a counterexample.

Let us explain the numbers in the columnSAVAGE of Table 3. The unimodular flow
of the stochastic preference flow represents a weak preference relation< on the set of
alternatives. This can be seen from data given in Table 1. Savage’s value function is then
defined by

V (a) = #{b ∈ S | a < b}. (4.1)

The arrows↑ or ↓, in the table, denote that an alternative got a better or worse position
when compared with stochastic rank. Generally speaking it is not true that a given flow
generates a weak preference, as it is the situation with a stochastic flow in our example,
see Theorem 4.

The stochastic flow is given on page 130. It can be downloaded from internet address
http://www.math.hr/˜caklovic/Decision/Download/stoc hastic.txt
and saved on your local disc. After doing that, you can start the program
http://decision.math.hr/decision/remote.pl and upload, now local, file
stochastic.txt from your local disk, using the above interface, the second column
in Table 3 can be checked too.

4.1 Condorcet’s flow

The value of Condorcet’s flow, on the arcα = (b, a), is defined as

FC(α) = v(b, a) − v(a, b)

wherev(b, a) denotes the number of voters that prefera againstb.
The Condorcet’s flow is given on page 134 and it’s normal integral is given in Table

4, columnC. POTENTIAL. In columnSAVAGE we also calculated the value functionV

generated by unimodular flow of Savage’s flow. It can be noticed, that it is equivalent
to rankingR generated byC. WEIGHT, i.e. R ◦ V−1 is a strictly increasing function. The
arrows↑ or ↓ have the same meaning as in Table 3.

Unimodular flow of the Condorcet’s flow generates a weak preference relation and
values of Savage’s value functionV associated to that weak preference are given in col-
umn SAVAGE, Table 4. Theorem 4 claims that Condorcet’s ranks, obtainedby PM, and
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Savage’s value function are equivalent that can be seen fromthe table, columnsC. RANKS

andSAVAGE.

Table 5: Ranking from Condorcet’s flow.

NAME ST. RANKS C. RANKS C. POT. C. WEIGHT (R) SAVAGE (V)

V. Mohamad 1 2 18.18 0.235↓ 7 ↓

L. Kekonnen 2 1 22.13 0.276↑ 8 ↑

A. Morgan 3 4 −0.13 0.093↓ 4 ↓

G. Jones 4 3 13.63 0.182↑ 6 ↑

A. V. Moore 5 5 −0.63 0.091 5

N. Flint 6 8 −26.75 0.025↓ 1 ↓

D. Charm 7 6 −12.75 0.050↑ 3 ↑

P. Beaute 8 7 −14.38 0.046↑ 2 ↑

In the columnST. RANKS of Table 4 ranking according to stochastic flow is given.
In column C. POT. normal integral of Condorcet’s flow is given according to equation
(2.1). Evidently, Condorcet’s ranks (C. RANKS) and stochastic ranks (ST. RANKS) are not
equivalent.

5 Conclusion

In the test example the original group weight and stochasticweight are equivalent (see
Tables 2 and 3). This means that instead of asking each group member for his prefer-
ence flow it is sufficient to ask him about the alternative he gives preference to, without
specifying the weight of the preference. A fine analysis of group decision, such as group
clustering is not possible in that case, seeČaklović (2003) for details.
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[3] Čaklović, L. (2003): Graph distance in multicriteria decision making context.
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Table 5: Stochastic flow from the example.

--------------------------------------------------- -------------
;File: Condorcet.txt

[General_section] Project=Ranking

[Levels_section] level1=group,1
level3=Morgan::Charm::Jones::Flint::Mohamad::Kekonn en::

Moore::Beaute

[Flow_section] [level1>group?level3] Morgan::Charm=-1 9
Morgan::Jones=19
Morgan::Mohamad=26
Morgan::Kekonnen=31
Morgan::Moore=1
Morgan::Beaute=-22
Morgan::Flint=-35
Charm::Jones=31
Charm::Mohamad=35
Charm::Kekonnen=35
Charm::Moore=11
Charm::Beaute=-2
Charm::Flint=-27
Jones::Mohamad=11
Jones::Kekonnen=12
Jones::Moore=-16
Jones::Beaute=-32
Jones::Flint=-34
Mohamad::Kekonnen=5
Mohamad::Moore=-21
Mohamad::Beaute=-30
Mohamad::Flint=-33
Kekonnen::Moore=-25
Kekonnen::Beaute=-33
Kekonnen::Flint=-36
Moore::Beaute=-13
Moore::Flint=-32
Beaute::Flint=-17
--------------------------------------------------- -------------


