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Choosing the Number of Factors in Independent
Factor Analysis Model

Cinzia Viroli1

Abstract
Independent Factor Analysis (IFA) has recently been proposed in the signal pro-

cessing literature as a way to model a set of observed variables through linear com-
binations of hidden independent ones plus a noise term. Despite the peculiarity of its
origin the method can be framed within the latent variable model domain and some
parallels with the ordinary Factor Analysis can be drawn. Ifno prior information
on the latent structure is available a relevant issue concerns the correct specification
of the model. In this work some methods to detect the number ofsignificant latent
variables are investigated. Moreover, since the method defines a probability density
function for the latent variables by mixtures of gaussians,the correct number of mix-
ture components must also be determined. This issue will be treated according to
two main approaches. The first one amounts to carry out a likelihood ratio test. The
other one is based on a penalized form of the likelihood, thatleads to the so called
information criteria. Some simulations and empirical results on real data sets are
finally presented.

1 Introduction

Independent Factor Analysis (IFA) has recently been introduced by Attias (1999) in the
context of signal processing as a way to model a set of observed variables through linear
combinations of hidden independent ones plus a noise term. Despite the peculiarity of its
origin Independent Factor Analysis is indeed a generative latent variable model (Monta-
nari and Viroli, 2005) whose structure closely resembles the one of ordinary factor model
but it assumes that the latent variables are mutually independent and not necessarily Gaus-
sians. The assumption ofnon-gaussianityof the factors represents the most appealing idea
of this approach with respect to the most common latent variable models that are instead
based on normally distributed latent variables. In the IFA model the probability density
function of the factors is assumed to be a mixture of Gaussians. This choice allows to
model arbitrary probability density functions.

Implicit in the IFA estimation problem are the assumptions regarding the number of
significant common factors and the number of mixture components for modeling each
factor. The aim of this paper is to propose some methods to detect the correct specification
of the IFA model. In doing this, we have moved from the more traditional approaches:
the likelihood ratio statistics and some information criteria. The methods discussed are
illustrated using simulated and empirical data sets.
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2 Independent Factor Analysis

The aim in Independent Factor Analysis is to describep observed variablesxj , which are
generally correlated, in terms of a smaller set ofk unobserved independent latent variables
yi and an additive specific termuj:

xj =

k
∑

i=1

λjiyi + uj,

wherej = 1, ..., p, i = 1, ..., k. In a more compact form the model is

x = Λy + u (2.1)

where the factor loading matrixΛ = {λji} is also termed asmixing matrix. Its structure
closely resembles the classical factor model but it differsfrom it as far as the properties of
the latent variables it involves is concerned. The random vector u representing the noise
is assumed to be normally distributed,u ∼ N (0, Ψ) with Ψ allowing for correlations
between the error terms. The latent variablesy are assumed to be mutually independent
and not necessarily normally distributed; their probability density functions are indeed
modeled as mixtures of Gaussians. The independence assumption allows to model the
density of eachyi in the latent space separately. In more formal terms each factor is
thus described as a mixture ofmi Gaussians with meanµi,qi

, varianceνi,qi
and mixing

proportionswi,qi
(qi = 1, ..., mi):

f(yi) =

mi
∑

qi=1

wi,qi
N (µi,qi

, νi,qi
) (2.2)

The mixing proportionswi,qi
are constrained to be non-negative and sum to unity.

A particular characterization of the IFA model is that it involves two layers of latent
variables: besides the factors,y, anallocation variable, z, must be introduced, as always
when dealing with mixture models. With reference to a particular factori, the mixture can
be thought of as the density of an heterogeneous population consisting ofmi subgroups.
For each observation the allocation variable denotes the identity of the subgroup from
which it is drawn. In thek-dimensional space, the multivariate allocation variable, z,
follows a multivariate multinomial distribution. The density of the observed data can be
constructed by conditioning to these two latent layers:

f (x|Θ) =
∑

z

∫

f(x,y,z|Θ)dy

=
∑

z

∫

f(z|Θ)f(y|z, Θ)f(x|y, z, Θ)dy

=
∑

z

f(z|Θ)f(x|z, Θ) (2.3)

whereΘ denotes the whole set of the IFA model parameters.
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It is not difficult to derive that the conditional densityf(x|z, Θ) follows a Gaussian
distribution since it is the convolution of two Gaussians:

f (x|y, z, Θ) = N (Λy, Ψ) (2.4)

and

f (y|z, Θ) = N (µz, Vz) (2.5)

whereµz andVz are respectively defined as:

µz =

[

m1
∏

q1=1

µ
z1,q1

1,q1
, ...,

mk
∏

qk=1

µ
zk,qk

k,qk

]

Vz = diag

[

m1
∏

q1=1

ν
z1,q1

1,q1
, ...,

mk
∏

qk=1

ν
zk,qk

k,qk

]

.

Therefore the expression (2.3) indicates that the density of the observed data given the
IFA model, i.e. the likelihood functionf(x|Θ), is a finite mixture ofp-variate normals.
Its generic component is given by

f(x|z, Θ) = N
(

Λµz, ΛVzΛ
T + Ψ

)

(2.6)

3 The IFA model estimation

The parameter estimates in the IFA model can not be obtained by maximizing directly the
likelihood function,f(x|Θ), obtained in the (2.3) since this quantity is analytically hard
to deal with.

In such situations, it is generally convenient resorting tosome additional unobserved
variables, such that if theywere knownthe optimal valueΘ could be computed easily. In
the IFA model the introduction of the two hidden layers (the factorsy and the multivariate
allocation variablez) allows to rephrase the likelihood function of the observeddata (the
“incomplete” data) in terms of the “pseudo-complete” data density:

f(x|Θ) =
∑

z

∫

f (z, y, x|Θ) dy, (3.1)

with

f (x, y, z|Θ) = f (x|y, Θ) f (y|z, Θ) f (z|Θ) , (3.2)

The objective of maximizing the incomplete log-likelihoodln f(x|Θ) can be now
achieved by the EM algorithm: the incomplete-data likelihood problem is solved in-
directly by proceeding iteratively in terms of the complete-data log-likelihood function
ln f (z, y, x|Θ). As it is unobservable it is replaced by its conditional expectation given
the observable data, using the current fit for the parameters, Θ′:

arg max
Θ

Ez,y|x,Θ′ [ln f (z, y, x|Θ)] .

By making use of the previous decomposition, the two steps ofthe EM algorithm can
be analytically derived. After laborious but straightforward calculations (for more details
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see Montanari and Viroli, 2005), the following estimates for the new parametersΘ in
terms of the old onesΘ′ are obtained:

Λ̂ = xE[yT |x]E
[

yyT |x
]−1

Ψ̂ = xxT − xE[yT |x]ΛT (3.3)

µ̂i,qi
=

f(zi|x)E[yi|zi, x]

f(zi|x)
ν̂i,qi

=
f(zi|x)E[y2

i |zi, x]

f(zi|x)
− µ2

i,qi
ŵi,qi

= f(zi|x).

The EM algorithm has the appealing property to converge monotonically to a local
maximum of the log-likelihood.

The number of parameters to be estimated is a consequence of an implicit assumption
regarding the number of significant common factors and the number of mixture compo-
nents for each. Assessing the correct specification of the model is thus an important phase
of the exploratory analysis. As far as the number of mixture components is concerned,
its increase improves the factor density approximation, but also involves a remarkable
increase in the total parameters of the model, in contrast with the empirical principle of
parsimony. This issue is consequent and strictly connectedwith another relevant aspect:
the detection of the correct number of factors.

The identification of the latent structure dimension has been traditionally achieved
according to two main approaches. The first one is to carry outa hypothesis test, using
the likelihood ratio as the test statistic. The other one is based on a penalized form of
the likelihood. As the likelihood increases with the addition of a factor, the likelihood is
“penalized” by the subtraction of a term that considers the number of parameters in the
model. This leads to the so called information criteria. These two approaches will be
presented in the next sections.

4 Likelihood ratio test statistic (LRTS)

The conventional application of the LRTS to test the null hypothesisH0 : k = k0 versus
H1 : k = k1 for somek1 > k0 is not possible in the IFA model, since the classic
regularity conditions do not hold for the transformed likelihood ratio−2 log λ to have its
usual asymptotic null distribution of chi-squared. In order to demonstrate it, one should
observe that the likelihood functionf(x|Θ) in the IFA model can be rephrased as a finite
mixture of p-variate normals, as shown in the expression (2.3). The classic regularity
conditions are not fulfilled for finite mixture models, because under the null hypothesis
the lastk1 − k0 mixing proportions lie on the boundary of the parameter space (underH0

they are all zero).
Several simulation results have been reported in literature on the null distribution of

the LRTS when standard regularity conditions do not hold. Inparticular, Wolfe (1971), on
the basis of a MonteCarlo study, suggested a modified test fora finite mixture ofp-variate
normals in which

−
2

n

(

n − 1 − p −
1

2
k1

)

log λ ∼ χ2
g (4.1)

is distributed as a chi-square with degrees of freedomg = 2p(k1 − k0).
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In the IFA model, the number of mixture components,m, is identified by the domain
dimension of the multivariate allocation variablez, that is

m =
k
∏

i=1

mi (4.2)

wherek is the number of factors andmi is the number of mixture components for each
factor. As clear from the expression (4.2), testing an hypothesis concerning the num-
ber of factors is equivalent to assessing an hypothesis concerning the number of mixture
components which depends onk0

H0 : k = k0 ⇒ H0 : m = m0 =

k0
∏

i=1

mi. (4.3)

Moreover using the (4.2) it is also possible to perform a testin order to assess the num-
ber of mixture components for a specific factor in the same spirit of the (4.3). Adopting
a more complex strategy with a series of tests the correct specification of the IFA model
can thus be completely investigated.

From an extensive simulation study we derived that Wolfe’s approximation for the
IFA model gives satisfactory results only if the sample sizeis adequately large, at least
aboutn > 10h whereh is the number of free parameters (Viroli, 2003). Unfortunately
the IFA model is characterized by the use of a large number of unknown parameters: with
p observed variables andk factors the free parameters areh = pk + p + (3

∑k

i=1 mi − k).
As a consequence the applicability of Wolfe’s solution is limited, since it requires more
observations than those generally available in the empirical context.

An alternative way to carry out a hypothesis test on the number of factors could be
to approximate the null distribution of the LRTS by boostrapping the data. However, it
must be pointed out that the implementation of the boostrapped LRTS on the IFA model
is actually computationally prohibitive.

5 Information criteria

Two commonly-used information criteria for the comparisonand selection between differ-
ent models are the Akaike’s Information Criterion (AIC; Akaike, 1973) and the Bayesian
Information Criterion (BIC; Schwarz, 1978). Akaike’s information criterion is constructed
on the log-likelihood

AIC = −2 log maxL + 2h

whereh is the number of the model free parameters. The second term ofthe criterion
gives a growing penalty in correspondence of an increasing number of factors, according
with the parsimony principle. With respect to the AIC, Schwarz’s information criterion is
characterized by a higher penalty term since it involves also the sample dimensionn

BIC = −2 log max L + h log n.
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Table 1: Values of the root mean squared error and the bias for BIC and AIC.

p=7 BIC AIC
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
(h = 22) (h = 37) (h = 52) (h = 22) (h = 37) (h = 52)

n=100 Bias 0.2 -0.9 -1.8 0.6 -0.9 -1.1
MSE 0.6 1.0 1.9 1.0 1.0 1.3

n=200 Bias 0.5 -0.8 -1.2 0.7 -0.5 -0.6
MSE 0.8 0.9 1.4 1.0 0.8 0.8

n=500 Bias 0.6 -0.5 -0.7 0.6 -0.2 -0.5
MSE 0.9 0.9 0.9 0.9 0.9 0.7

Table 2: Values of the root mean squared error and the bias for BIC whenp=10.

p=10 BIC
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
(h = 28) (h = 46) (h = 64) (h = 82) (h = 100) (h = 118)

n=100 Bias 0.2 -0.8 -1.6 -2.4 *** ***
MSE 0.5 0.9 1.8 2.6 *** ***

n=200 Bias 0.7 -0.5 -0.7 -1.8 -1.9 -3.9
MSE 1.1 0.7 1.2 2.2 2.3 4.2

n=500 Bias 1.0 0.2 1.3 1.0 0.2 -1.3
MSE 1.4 1.0 1.7 1.3 0.7 1.7

The performances of the two criteria in the IFA model have been analyzed through a
wide simulation study performed by using several initialization of the parameters in the
EM-algorithm.

The situations considered differ according to the sample sizesn=100, 200, 500, the
valuesp = 7 andp = 10 of the number of observed variables, the number of latent factors
k = 1, . . . , K factors, whereK is the maximum number of estimable latent variables
identified by the Lederman’s condition

k ≤
1

2
{2p + 1 −

√

8p + 1}.

Each factor is here modelled by a constant number of mixture components, withmi =
3 ∀i. For each of the 50 simulations, the root mean squared error (MSE) and the bias
(Bias) were calculated:

MSE =

(

1

50

50
∑

i=1

(k∗
i − k)2

)
1

2

Bias =

∑50
i=1 k∗

i

50
− k.

The results are summarized in the Tables 1, 2 and 3. The BIC criterion generally
shows a negative bias for bothp = 7 andp = 10 because of its high penalty term but this
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Table 3: Values of the root mean squared error and the bias for AIC whenp=10.

p=10 AIC
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
(h = 28) (h = 46) (h = 64) (h = 82) (h = 100) (h = 118)

n=100 Bias 0.8 -0.2 0.3 -0.3 *** ***
MSE 1.4 0.8 1.2 1.3 *** ***

n=200 Bias 1.4 0.7 2.3 1.4 0.4 -1.0
MSE 1.9 1.2 2.5 1.5 0.7 1.3

n=500 Bias 1.7 1.3 2.6 1.7 0.6 -0.6
MSE 2.2 1.7 2.7 1.8 0.8 0.8

tendency to underestimate the number of factors decreases as the sample sizen increases.
When compared to BIC the penalty term of AIC penalizes complex models less heavily,
since its penalty term does not depend on the sample size. In fact, the Akaike’s criterion
is more favourable to factor inclusion but it tends to fit too many factors for the case
p = 10, and this tendency gets worse asn increases. Although the joint results of the two
information criteria seem to offer appreciable indications on the correct number of factors,
the appearance of improper solutions is not in principle excluded, because as explained
by Titterington et al. (1985) they rely essentially on the same regularity conditions needed
for the−2 log λ to have its usual asymptotic distribution under the null hypothesis.

6 Empirical results

6.1 Thyroid data

The data are taken from the study by Coomanset al. (1983) on the tyroid disease. The
example consists of 5 measurements (T3-resin uptake test, Total Serum thyroxin, Total
serum triiodothyronine, Basal thyroid-stimulating hormone and maximal absolute differ-
ence of TSH value after injection of 200 micro grams of thyrotropin-releasing hormone
as compared to the basal value) on 215 patients, that are distinguished in three groups on
the basis of their thyroid status (normal, hyper and hypo).

Before performing the IFA estimation, the previous criteria has been applied in order
to detect the correct specification of the model. The AIC and BIC criteria indicate that
two factors are enough to describe the latent space. The application of the likelihood ratio
to detect the number of components for each factor finally lead to two factors with two
components each.

The research of independent factors with distribution non necessarily gaussian offers
some advantages with respect to the ordinary Factor Analysis solution, since the descrip-
tion of the latent space could be sometimes warped by the assumption of gaussianity. It
the case of this example. The first graph of Figure 1, shows thescatter plot of the factor
scores in the ordinary Factor Analysis obtained by the well known iterated principal factor
method. The second graph of the Figure 1 shows instead the IFAsolution. It seems more
interesting. In fact, the first factor clearly captures the variability of the normal and hyper
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Figure 1: Scatter plot of the factor scores in ordinary Factor Analysis and Independent Factor
Analysis. In the graphs the circles denote the normal group of patients, the triangles indicates

the hypo group of patients and the boxes the hyper group.

groups of patients while the second one describes those of the patients with normal and
hypo thyroid.

6.2 Boston neighborhood data

The data set has been entirely published in Belsleyet al. (1980). Each observation is
a standard metropolitan tract in the Boston area. For each zone 13 summary variables
have been measured: median value of owner-occupied homes; per capita crime rate by
town; proportion of residential land zoned for big lots; proportion of non-retail business
acres per town; nitric oxides concentration; average number of rooms per dwelling; pro-
portion of owner-occupied units built prior to 1940; weighted distances to five Boston
employment centres; index of accessibility to radial highways; full-value property-tax
rate; pupil-teacher ratio by town; proportion of blacks by town; fraction of lower status of
the population.

Exploratory Projection Pursuit (Friedman, 1987) has showed striking structure of the
data and non gaussian projected directions.

In Figure 2 the ordinary Factor Analysis solution and the Independent Factor Analysis
one are represented. The specification of the IFA model has been accomplished by a two
step forward procedure. In the first step the likelihood ratio test statistics has been applied
to determine the number of factors, with a fixed number of mixture components. In the
second step, with fixedk = 2 factors the number of mixture components has been chosen
applying the LRTS test in a forward strategy. This procedurehas indicated a model with
two factors both of them modeled by 3-dimensional gaussian mixtures. The IFA solution
exhibits a clear clustering structure of the data. These groups are not captured by the
ordinary factor analysis solution, although the differences in the factor loading estimates
are not so relevant (Table 4).
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Figure 2: Boston Neighborhood Data: Factor Analysis and IndependentFactor Analysis
solutions.

Table 4: Factor loading estimates of IFA, FA unrotated solution and FA with varimax rotation.

IFA FA Varimax
MEDV -0.36 0.82 -0.69 0.65 -0.21 0.93
CRIM 0.67 0.03 0.57 -0.01 0.47 -0.33

ZN -0.29 0.18 -0.58 -0.11 -0.54 0.24
INDUS 0.64 -0.16 0.84 0.13 0.77 -0.36
NOX 0.73 -0.04 0.83 0.29 0.85 -0.22
RM -0.20 0.61 -0.50 0.51 -0.12 0.70
AGE 0.50 0.00 0.74 0.25 0.75 -0.20
DIS -0.55 -0.09 -0.76 -0.43 -0.87 0.07
RAD 0.97 0.03 0.74 0.10 0.67 -0.33
TAX 0.90 -0.05 0.81 0.07 0.71 -0.39

PTRATIO 0.37 -0.33 0.49 -0.25 0.26 -0.48
B -0.50 0.04 -0.45 -0.01 -0.38 0.25

LSTAT 0.52 -0.34 0.78 -0.28 0.49 -0.67

Conclusions

In this paper the Independent Factor Analysis has been introduced and some criteria have
been employed in order to detect the correct specification ofthe model. The proposed
methods seem to perform quite well both on the simulated and real data. However some
issues are still open and the problem deserves further attention.

In fact, the approximation for the likelihood ratio test statistics gives satisfactory re-
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sults only if the sample size is adequately large, at least about n > 10h whereh is the
number of free parameters. The boostrap methods could offera valid strategy to better
approximate the null distribution of the LRTS, although it is computationally intensive.

Moreover the information criteria do not offer a strategy for the choice of the num-
ber of mixture components. Also they rely essentially on thesame regularity conditions
needed for the−2 log λ to have its usual asymptotic distribution under the null hypothesis
and therefore despite their easy and immediate applicability they are not robust enough to
violations of standard assumptions.

Some future research could be developed in the direction of the bayesian approach
which provides a natural framework for considering the casewhere the number of com-
ponentsk is unknown. By allowingk to vary with the other parameters and specifying
their joint prior distributionf(k, θ), inference may be based on the posterior distribution
f(k, θ|x). In this spirit, an interesting approach is based on the reversible jump Markov
chain Monte Carlo (Green, 1995), that is capable of jumping between the parameter sub-
spaces of differing dimensionality.
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