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Less Parametric Methods in Statistics 

K. Laurence Weldon1 

Abstract 

Despite forty years of revolution in the tools available for statistical 
analysis, the current academic tradition in statistics is remarkably similar to 
the pre-computer tradition. This tradition is rooted in parametric modeling, 
estimation, and testing, and optimal procedures based on these models. The 
paper argues for a shift in emphasis away from parametric modeling and 
estimation to graphical summary, from omnibus optimal techniques to those 
that are more context-specific, and from goals of objectivity to goals of 
revelation. It is suggested that the emphasis in statistical education should 
be rebalanced to reflect certain modern computer-based techniques. 

1 Introduction 

It is widely recognized that the advent of the computer has changed the scope of 
the statistics discipline (Efron, 1993; Moore et al, 1995; Kettenring, 1997; Tukey 
1997; Cleveland, 2001;  Moore, 2001). However there are still aspects of the 
theory currently taught as essential basics, that were motivated in pre-computer 
times, but whose relevance in the modern context is diminishing.   Some new 
computer-based methods that tend to be portrayed as second-choice alternatives 
need to be re-appraised and upgraded in status.  For example, the power of 
resampling has been gaining momentum, especially since the landmark paper on 
the bootstrap by Efron (1979).  Implications of the resampling idea for the 
teaching of introductory statistics has been stressed by Simon (1993).   

In addition to the impact of resampling on statistical education and practice, 
the increasing importance of graphical methods (Cleveland, 1993;  Bowman, 1997;  
Fisher, 2001), simulation (Efron, 1993), algorithmic methods (McLachlan, 1997), 
exploratory data analysis (Tukey, 1997; and Hoaglin et al. 1991), and Bayesian 
inference (Efron, 1998) have all derived from the impact of computers.  Are these 
simply add-ons to the traditional theory, to be treated as peripheral topics and left 
to advanced courses, or should they have a more fundamental impact? The answer 
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matters because the future of statistics, both theory and practice, depends upon 
what is offered in the mainstream programs of statistical education. The 
conservatism of our teaching has already lost huge areas of data-based methods to 
other disciplines, such as data mining (Friedman, 1999). 

The mathematical theory of statistics has its roots in the pre-computer age.  
The advent of the computer was seen to expand the realm of many of the 
theoretical models originally proposed, like Bayesian analysis, Monte Carlo 
methods, or even multiple regression.  However, another effect of computers was 
to make entirely new approaches to statistical analysis feasible (Efron and 
Tibshirani, 1997). While many authors have drawn attention to these new 
approaches, the developments have had a fairly minor impact on undergraduate 
textbooks. Since these textbooks largely determine the content of their associated 
courses, the teaching of statistics has been slow to adapt to the modern context of 
statistical practice.  As Moore (1995: 251) has suggested: 

"I suggest that the limited impact of technology on teaching is rooted in 
cultural resistance to change in colleges and universities, …"   

A similar view is expounded by Chambers (1993) in his outline of the 
difference between “greater statistics” and “lesser statistics”.  He makes it clear 
that contemporary statistics instruction as relating mainly to “lesser statistics”. 

Kettenring (1997) says it this way “The question I wish to raise is whether the 
21st century statistics discipline should be equated so strongly to the traditional 
core topics and activities as they are now.  Personally I prefer a more inclusive 
interpretation of statistics that reflects its strong interdisciplinary character.” 

Finally, to emphasize the slow nature of change to our discipline, note that 
Tukey (1962) warned many years ago of the narrow tradition the discipline was 
developing. 

In the following sections, some topics that tend to be viewed as central to our 
discipline are re-examined in the light of the modern statistical context. We wish 
to add to the growing doubt concerning the conventional approach to instruction in 
statistical theory, a movement that has a long history even though its impact has 
been small. In addition, we suggest with examples the directions for change.  
Course designers and textbook authors may wish to consider these arguments.  

2 The changing environment of statistical practice 

2.1 The traditional focus on parametrics 
 
Are parametric models and parameter values really the best way to summarize 
distributions, and make comparisons of distributions?  The issue here is not 
whether to use the t-test or the Mann-Whitney test - both tests are concerned with 
a location parameter, and the Mann-Whitney differs only in the model for the data, 
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not in the feature of interest, the location parameter.  The issue I want to address is 
whether the feature of interest is really a simple parameter value, or is it a whole 
distribution?  Has our focus on the estimation of parameters been the result of 
limited options for distribution summary in the absence of modern computers and 
software?  Are investigators really interested in a distribution’s parameters, or in 
the whole distribution?  

When the model is accepted, knowledge of the parameters produces the 
modeled distribution, but it is the actual distribution that is of interest to the 
investigator.  We have a choice of estimating a model (parametrically) or 
estimating an underlying distribution (directly). The following example will help 
to illustrate the choice.  Although the example is worked through in some detail, it 
should be stressed that it is the general issue of the focus on parameters, not the 
particular example, that is the issue here.  

Imagine the outcomes shown in Figure 1 from a clinical trial aimed at 
comparing the effectiveness of two treatments.  Assume the quantity measured is 
something that is to be maximized for clinical effectiveness. The clinician would 
like to extract some comparative information about the two treatments, without 
assuming models for the responses.  

Figure 1 shows dotplots of simulated samples of size 25 from N(0,1) and 
N(1.3,3) distributions. The Treatment variables represent responses of patients, 
with a large value being a good response. The question is whether Treatment 2 is 
better than Treatment 1, based on knowledge of  these data alone.   

 

                      :  . . 
            . .   : :.::.:.:.:   . 
     +---------+---------+---------+---------+---------+-------Treatment1 
 
       .  .. .    .: . . .  .   .   .    .:.. . ..   :   . . 
     +---------+---------+---------+---------+---------+-------Treatment2 
  -4.0      -2.0       0.0       2.0       4.0       6.0 
 

 

Figure 1: Data for a comparison of treatments. 

 

The parametric approach to these data would be to test for a difference in mean 
and/or standard deviation between the two treatments.  Informally there does seem 
to be a higher mean and a higher standard deviation associated with Treatment 2.  
But how should this be verified with standard tests? An F test for the variance 
ratio will certainly show the second distribution to have the greater variability. If 
we use a t-test or a Mann-Whitney test for a location shift, in spite of the clear 
violation of assumptions, we get equivocal results, rather than a clear indication of 
the superiority of treatment #2. In the particular example shown, the p-value is 
about .05.   
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The data is actually simulated from two normal distributions: 
1. N(0,1) 
2. N(1.3,3)   
In this case it can be verified that the shift in mean will only be statistically 

significant at the .05 level in approximately one-half of the pairs of samples from 
these populations, and this is true whether one uses the t-test or the Mann-
Whitney.  So there is a very good chance that the researcher in this situation would 
be led to conclude that treatment 2 is no better, on average, than treatment 1, if 
these inappropriate location tests were used.  The example we have chosen from 
the hypothetical population for illustrative purposes is one that has a median 
location differential: that is, there are equally frequent samples that show more and 
less differential than this one. In this section, we explore both conventional and 
unconventional analyses of these data. 

A test of the variance ratio between the two samples would almost always be 
significant, so a traditional conclusion could easily be that, not only is Treatment 2 
is no better on average, but it also appears to be less consistent!  On the other 
hand, the researcher would justifiably believe, based on the graph, that for most 
patients, treatment 2 provides a superior result.  Perhaps the researcher would 
invent a test that uses the observation that about half of the treatment 2 responses 
are better than the highest treatment 1 response, and get the result published 
anyway.  This last-resort strategy is not recommended for obvious reasons.  The 
point is that the traditional approach fails because of a technicality that has 
nothing to do with the science of the situation. The unnecessary assumption is the 
assumption of homoscedasticity, or approximate homoscedasticity, for the t-test or 
for the Mann-Whitney test. 

What would be an appropriate report of the above outcome?  First of all, the 
graph itself does contain all the information in the outcome of the experiment, and 
the only question is how this information should be interpreted.  This 
interpretation is not entirely a statistical question - there are some medical and 
ethical issues involved.  However, if we leave aside these issues, the graphical 
display itself shows without question that the second treatment is associated with 
generally higher values. We might suggest that the second treatment looks very 
much better.  A radical suggestion might be that formal tests are unnecessary. 

However the issue of reproducibility can be studied formally without using a 
parametric model for the data, through a re-sampling strategy.  If one asks, "How 
often will Treatment 2 produce a result that is superior to Treatment 1?", based on 
the data available, the resampling estimate is an estimated probability of 0.65.  
This is obtained by sampling with replacement from each distribution and 
comparing pairs of simulated values. 

The fact that this is greater than 50% suggests the superiority of Treatment 2, 
but does not establish it.  To discount sampling error, we need to know the 
precision of the 0.65 probability estimate.  One way to tackle this is with the raw 
bootstrap.  If one performs the same estimation procedure starting with 
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bootstrapped re-samples of each treatment response, the result is that the estimated 
sampling distribution has a standard deviation of 0.08 around the mean of 0.65, 
and the distribution appears normal. This suggests that the nominal proportion, 
0.5, is 1.9 standard deviations below the observed mean, 0.65, of this sampling 
distribution, and that the superiority of Treatment 2 is reasonably well established. 

This information is based entirely on the particular sample of 50 data values, 
and not at all on the models used for the simulation of the data. We have not used 
the specifications of the simulated data.  However, if we use the normal models 
N(0,1) and N(1.3,3) to verify our resampling strategy, one can compute that the 
true proportion (underlying our estimate of 0.65) was actually 0.66, and the 
standard error of our bootstrapped estimation procedure can also be found (by 
simulation) to be about 0.12.  This is somewhat greater than the 0.08 based on our 
single sample in this case, indicating that the significance of 0.66 might have been 
missed from a single sample (with a one-sided P-value of about .10).  However the 
example was chosen to be marginally significant by parametric tests so it is not 
surprising that it would be marginally significant by non-parametric approaches.  

It might be argued that the above estimate of 0.65 is itself a parametric 
estimate that follows the traditional parametric approach.  However, we have 
shown that, if one really must have a parametric summary of the data, then it 
should be in terms of parameters of practical interest – outcome parameters rather 
than parameters of the data distribution.  Moreover, the estimation of this 
parameter and its variability was done without reference to a parametric model for 
the data itself.  

This data-based analysis would not be as reliable as a parametric-data-
modeling approach when the parametric model for the data is correct. However it 
is an attractive alternative that is very adaptable to a variety of contexts and very 
easy to explain to a scientific researcher. Moreover, it avoids the technical 
problems having nothing to do with the science of the situation.  Parametric 
modeling of the data can be an unnecessary, and even confusing, step. 

Let us now further review the parametric analysis of this data with the "not-
parametric" analysis.  The term "nonparametric" will be avoided here since it 
suggests an approach such as the Mann-Whitney test that is actually parametric in 
the location parameter.  As we mentioned, the Mann-Whitney has equi-variance 
assumptions too.  

The not-parametric analysis focused on the real feature of interest to the 
clinician, the relative performance of a typical patient under the two treatments.  
The clinician is not really interested in how the average patient does, but rather in 
how many patients will do better using Treatment 2, and how much better  or 
worse they will do.  Of course, without intra-patient experiments, we do not have 
an accurate intra-patient estimate of the differential, but we do have an estimate of 
how many patients do better (65%). Also, note that it is not the 65% that the 
clinician will be most interested in:  but the fact that this is significantly greater 
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than 50% will be of interest.  The clinician can return to the graph of the data to 
further interpret the outcome without worrying that the difference is due to chance.  

The analysis just performed on this hypothetical data is "not-parametric".  The 
feature of interest to the clinician is described as directly as possible.  No 
parametric model of the data itself is used for this description. The degree of 
consistency in the superiority of Treatment 2 is estimated.  The reproducibility of 
the superiority of Treatment 2 is assessed.   

These results are achieved easily through use of computer intensive 
techniques: graphical display, simulation, and resampling.  All the problems 
inherent in the usual "parametric" approach (which includes the so-called 
"nonparametric" tests) are avoided.   

If the distributions were markedly non-normal, as with very skewed 
distributions, inappropriate conclusions could result from the parametric approach.  
Note that this technical problem disappears when the distribution is considered as 
a whole, and a not-parametric approach is used. 

We recommended a graphical display as an important part of the data 
summary. 

For many purposes, graphical displays are adequate distribution summaries, 
and allow efficient communication of distributions.  The ability to communicate 
sample distributions graphically makes a numerical summary, via parametric 
estimates, less important. Moreover, numerical information can still be 
communicated graphically, but in a less-restrictive way. For example, estimated 
quartiles can be portrayed graphically along with the data values themselves. 
Estimates of location and scale parameters are far less informative than the entire 
distribution, portrayed graphically. The reputed efficiency of parametric 
descriptions is questionable in an age of easy graphical summaries provided 
through software.  

The overall suggestion from this example is this:  in a world of easy access to 
powerful statistical software, parametric summary of the observed data is often 
inappropriate.  Information from data-based studies is often best summarized 
graphically, and questions of reproducibility can be asked with respect to whole 
distributions, and not merely with respect to certain parametric summaries. 
Statistical practice seems to be evolving towards a less parametric approach.  

2.2  The focus on estimates of regression coefficients 

Regression is another area where the focus on parameters may be overdone.  
Regression methods are often proposed for studying "relationships between 

variables".  See for example Devore (2000: 488), Moore and McCabe (1993: 117), 
Wild and Seber (2000: 503).  Based on the model Y = βX + e, we want to study the 
relationship between X and Y.  However, a more precise objective is revealing: 
regression models are used either to predict Y from X, or to study the model that 
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would do this prediction.  When X is random and we merely want to describe the 
relationship between X and Y, with no focus on prediction, then minimizing the 

sum of squares of Y − ˆ Y  is not appropriate.  If a fit were required in this situation, 
the least squares approach should find a fit which minimizes the sum of squares of 

||Y − ˆ Y ⊥ || , the Euclidean distances of data points to the fitted line.  Such a fit is not 
called regression, and it is certainly not suited to prediction or describing a 
predictive relationship. Regression theory assumes prediction of Y from X, or a 
predictive model for Y conditional on X, is required.  We will leave the topic of 
general “fitting a curve to points”, requiring the perpendicular distances, and focus 
on regression prediction, based on Y|X.   

What we do with our predictive fit depends on whether we are interested in the 
ability to predict Y from X, or in the detection of consistent predictors X of Y.  In 

the former, we focus on Y − ˆ Y  to judge the quality of the model, whereas in the 
latter, the actual coefficients of X are of primary interest.  

In the case of our actually using the fit for prediction, the estimate of the 
regression coefficients is really of minor interest.  We simply want the predictor to 
work well, and how this is achieved is not so important.  The problem of 
colinearity is not really a problem in this setting since interpretation of the 
predictive equation is not important as long as the predictions are accurate.  In 
other words, estimates of β  in this setting are not very useful by themselves -- 
they are only useful as employed in the predictive equation. There is no need in 
this case for confidence intervals for  β i  . 

On the other hand, if our interest is in the identification of useful predictors, to 
find out what variables actually do make a difference to our response variable Y, 
then we usually frame the question as a null hypothesis that β i  = 0.  Again, the 

estimation of β i  is not of interest.   Of course, the question of whether or not β i  = 

0 is unanswerable in a strict sense, and it may be argued that an estimate of β i  is 

more useful than a test of the hypothesis β i  = 0.  However, if the research question 

is really whether an explanatory variable has any role in prediction, the hypothesis 
test is really the more direct approach.  Our methods for testing β i  = 0 or any other 

parametric statement have been criticized over the years from many directions, but 
at least the question we are asking seems to be the right one.  A  wrong question is 
"Is the population value of β i  close enough to zero that we can conclude it is equal 

to zero?" In other words, estimation is not our goal in this context. 
In some situations, it may be of interest to know the actual size of the 

regression coefficient, but the suggestion is that this is fairly rare.  Even in 
comparisons of regression coefficients, when the relative importance of predictors 
is desired, the question will often reduce to a test of  β * = β2 − β1=0. Even in this 
situation, the estimate of regression parameters is not really of primary interest.  

These arguments suggest that interval estimation of β  in the regression model 
Y = βX + e is not really as informative as a focus on its estimation would suggest. 
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The estimation of regression coefficients is not often the ultimate goal, but rather 
an intermediate computation.  Again, the focus on parametric estimation may 
distract the statistician from the questions of practical importance.  

Note that it is not the theory that is at fault here, but rather the customary use 
of the theory.  So much emphasis has been put on fitting a parametric model for 
the data, that thoughtful consideration of the information that is the goal of the 
analysis, is minimized. This emphasis appears in practice and in instruction. In 
presenting statistical theory, we must not emphasize the model so much that 
students forget that it is reality that we are trying to describe, and that the model is 
merely a simplified approximation.  Moreover, our optimization methods are 
usually model-based, and a healthy disrespect for "optimal" procedures should be 
encouraged, since the optimality is usually conditional on the model being correct.  

In this section the failings of the data->parametric model->estimation of 
parameters paradigm have been highlighted.  We have tried to suggest the relative 
merit of the data->graphics->not-parametric summary and the suggestion is that 
we give this more emphasis in our training of statistical practitioners and 
theoreticians.  

2.3  The parametric view of prior knowledge 

How should prior knowledge about data context influence data analysis? This 
clearly depends on the purpose of the analysis. The Bayesian approach is 
appropriate for updating knowledge (either subjectively or objectively), while the 
classical approach attempts to extract information from data that is context-free, or 
in other words, free of prior belief. However neither approach is very successful in 
achieving its respective goal. The Bayesian approach attempts to summarize prior 
knowledge with a prior distribution of a parameter, whereas prior information is 
usually more complicated than that. The classical approach incorporates prior 
knowledge in the specification of a class of probability models from which a fit is 
selected, but the impact of the prior information in this case is quite hard to judge. 
The robustness of the fit to the specification of the class of probability models may 
be viewed as a strength or a weakness, but either way the impact is poorly 
controlled.  

The robustness movement attempted to solve the problem of model mis-
specification by arranging that the model specification have little impact on 
inference. However, researchers would ideally like to have the data-based 
information combined with their prior information in an organized way, as well as 
having the data-based information separated out. Researchers will act on the basis 
of the combination of prior information and data, even if they only report the 
information in the data itself.  Even descriptive statistics procedures can be altered 
by prior information – for example the choice of a smoothing parameter in a non-
parametric smooth.  It may be useful to explore methods for incorporating prior 
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information of all kinds into the analysis of data, but with a measure of the 
sensitivity of the inference output to the prior information.  

A start in the consideration of a theory incorporating model-building into 
statistical theory has been suggested by Cleveland and Liu (1999).  They extend 
the Bayesian idea of a prior to external information: through scientific knowledge, 
such as linear or exponential growth, one judges the credibility of neighborhoods 
of models.  The Bayesian likelihood is extended to exploration information: 
through data analysis, such as probability plots, one uses intuition and graphical 
techniques to judge the plausibility of data given a neighborhood of models.  One 
might call this "holistic statistics"!  Cleveland and Liu call it model specification 
inference.  

Hierarchical Bayes models have been proposed to accomplish this end.  
However, this very mathematical approach seems too parametric to capture all 
prior information of general scientific value.   

The goal of a purely objective method of extracting information from data 
should perhaps be set aside. As the discipline of statistics is used by an expanding 
range of researchers, we should aim at exposing the hazards of subjectivity, rather 
than trying to eliminate it from our analytical processes. The value of intuition in 
scientific progress is, with good reason, widely believed, and statistical methods 
should adapt to this reality.  We have been reminded of the need for informal 
inputs to data analysis by Cleveland (2001).  

The argument in this section has been that the incorporation of prior 
knowledge into data analysis is still a very informal process, and current theories, 
Bayesian or classical or other,  still need a lot of development before the 
informality can be reduced.  We need to put less emphasis on optimal procedures 
(conditional on the model being correct) and more on the hazards of jumping to 
conclusions.  

2.4. Do statistical techniques provide the tools necessary for 
decision-making?  

When decisions depend on data-based information that is subject to unexplained 
variability, we try to reduce the impact of the uncertainty as much as possible. 
Such decisions are typically about whether two or more samples are from the same 
population, or not. Our prior beliefs about the state of nature usually determine 
what strength of evidence is required to change these beliefs.  A surprising result 
usually requires very strong evidence to change our opinion.  In medical studies, 
usually more than one study with strong evidence is required to establish a 
surprising result. The observed p-value that would actually change a belief will 
certainly depend on the strength of the prior belief.  Decision making must take 
into account prior belief.  
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Another factor affecting the strength of evidence for a "significant" result is 
the cost of making a wrong decision. Yet neither the strength of prior belief nor 
the cost of wrong decisions is formally incorporated into the p-value approach,  
whether "significance testing" or "hypothesis testing".  This reminds us that the p-
value approach is not a formal decision-making procedure (in spite what we tell 
our introductory students).  

Statisticians have known for decades how to incorporate loss functions and 
prior belief into a decision-making procedure. But the difficulty in specifying 
these aspects of the decision-making framework in a scientifically acceptable way 
has retarded their widespread use. An interesting text for senior undergraduates 
"Making Hard Decisions"  (Clemen and Reilly, 2001) has been recently published 
attempting to close this gap. Too many textbooks attempt to portray the p-value 
approach as a respectable decision-making procedure. These textbooks give the 
impression that the p-value approach is an objective method for decision making.  

However this objectivity is clearly an illusion. The choice of critical p-value is 
arbitrary,  and the definition of the null hypothesis and alternative hypothesis is 
based on prior belief.  Moreover, since the cost of making wrong decisions (or the 
utility of making correct decisions) is usually not perfectly known, correct 
quantification of the decision-making process is not usually possible.  

Nevertheless, decision-making should incorporate these vaguely known 
features as well as possible so that good decisions can be made. To back-off to the 
part that can be done objectively and mechanically seems to be ill-advised.  And 
yet this is what we often urge our students and applied researchers to do. To be 
acceptable to editors of scientific journals, data-based research conclusions must 
be supported by traditional testing. Scientists who do not understand the 
limitations of traditional inference are strong advocates for its use. But it is 
teachers of statistics that generate this misguided belief.  

Textbook authors need to be more careful in describing how statistical testing 
is to be used, and how it relates to decision-making.  Moreover, we need to be 
more flexible in our acceptance of the respectability of the subjective aspects of 
decision-making.  In fact, we should be emphasizing the importance of these 
subjective aspects of the process of decision-making under uncertainty. We also 
need to publicize to journal editors the limitations of "tests of significance" for 
evaluating whether or not a certain scientific outcome is worthy of publication.  

This theme ties in to our overall theme of over-emphasis on parametric 
models.  If we suppose that the focus of data-based research is a decision about the 
value of a parameter, in many cases we will have oversimplified the science of the 
situation too much.   
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2.5  The least-squares criterion 

Is least squares a reasonable criterion for estimation and curve-fitting? Certainly 
an important aspect of our theory of parametric modeling is the least-squares 
criterion. 

For numerical or graphical summary of a relationship between two variables, 
when one variable is considered dependent on another, we usually search for the 
function in our model class that minimizes the sum of squared deviations in our 
data set, or sometimes a weighted sum of squared deviations. There is an 
implication in this criterion that our fit should try hard to accommodate outlying 
observations, because of the amplification effect of squaring the deviations. The 
practical implication of this is that a decision needs to be made in the curve-fitting 
process whether or not certain "outlying" points are to be ignored, at least 
temporarily. This complicates the fitting procedure. Methods robust to outliers like 
the bisquare procedure as described by Cleveland (1993) modify least squares in a 
semi-objective way to avoid this complication. The bisquare approach iteratively 
re-weights the data values according to the residuals. The bisquare is just one of 
many such procedures, but the idea is that procedures exist to improve on the 
purely subjective decision to keep or set aside certain outlying observations.  

However, what at first may seem to be the methodological problem of dealing 
with outliers may actually be a problem with the least squares criterion itself. Is 
the squared distance of a data value from a proposed fit really the appropriate 
contribution of the value to the measure of lack-of-fit? Perhaps a procedure for 
seeking a conditional mode would be more generally acceptable. This would be 
based on nonparametric density-estimation procedures. The smoothness parameter 
in the density fit would allow us to effectively modify the least squares criterion. 
Fits determined in this way can be assessed using residual analysis, as usual.  This 
modal method is not seriously proposed as the answer, but is mentioned as typical 
of the kind of option available when least squares is questioned.  Modern 
statistical software makes these options feasible.  

The least squares criterion fits nicely with normal models, maximum 
likelihood estimation, the central limit theorem, minimum variance unbiased 
estimation, and the familiar averaging process. But the mathematical tractability of 
this criterion may have blinded us to the ease of more flexible methods that have 
been made feasible by modern software. The practice of statistics should include 
more of these smoothing kernel approaches to estimation. Available software 
removes the algebraic and arithmetical obstacles, and also the problem of reporting 
the result of such smoothes, since a graphical report is ideal. Nonparametric 
smoothing should be recognized as a method appropriate for the general user, and 
not only for advanced data analysis.  Least squares should be recognized as a 
mathematically appealing technique that is gradually being replaced as its 
limitations for applied data analysis are recognized.  
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3 Summary and proposal 

Academics in statistics share a common interest in exploring probability models, 
developing methods for fitting models to data and making inferences about model 
parameters. However this activity has led us into a larger discipline which includes 
graphical methods, data summary, research design, exploratory inference, and the 
construction of complex simulation studies. Thus the discipline as it is practiced 
has undergone a major intellectual expansion - but it is turf that is being claimed 
by other disciplines (Friedman, 1999).  We must adapt our teaching traditions to 
meet these new challenges.  Our textbooks must adapt more completely to the 
modern world of computerized data analysis.   

To be specific about the topics that need more emphasis, I suggest the 
following topics be added to the early courses and their textbooks: 

1. The limited role of parametric models and the opportunities for 
resampling approaches to inference.  

2. Nonparametric smoothing and the graphical representation of  
relationships among variables. 

3. The influence of prior information of all kinds on statistical procedures.  
4. Data-based decision making and the contrast with the p-value approach. 
5. Alternative loss functions to least squares and the impact on practice,  

especially on the handling of outliers.  
These extensions of our traditional material are suggested to remove the 

dependence of statistical practice on parametric models for observed data.  Other 
current trends such as greater use of simulation and resampling techniques have 
not been discussed here but are covered in Simon (1993) and Weldon (2001).  

Even the best popular textbooks used for undergraduate statistics courses do 
not have much to say about these topics  (Moore and McCabe, 1993; Freedman, 
Pisani, and Purves, 1995);  Wild and Seber, 2000; Devore, 2000, De Veaux and 
Velleman, 2004). Work needs to be done to see if these very practical ideas and 
tools can be presented successfully at the undergraduate level.  Some preliminary 
results from a course taught to first year students with no prerequisites, in which 
many of the recommended topics were included, shows that the material can be 
absorbed (Weldon, 2004). It is not enough to include these topics in graduate 
courses and professional seminars.  As Cleveland (2001) says: 

"A very limited view of statistics is that it is practiced by statisticians. … The 
wide view has far greater promise of a widespread influence of the intellectual 
content of the field of data science. " 



Less Parametric Methods in Statistics 107 

 

 

References 

[1] Bowman, A.W and Azzalini, A. (1997): Applied Smoothing Techniques for 
Data Analysis. Oxford: Clarendon Press. 

[2] Chambers, J.M. (1993): Greater of lesser statistics: A choice for future 
research. Statistics and Computing, 3, 182-184.  

[3] Clemen, R.T and Reilly, T. (2001): Making Hard Decisions. Duxbury: Pacific 
Grove. 

[4] Cleveland, W.S. (1993):  Visualizing Data. NJ: Hobart Press, Summit.  

[5] Cleveland, W.S. and Liu, C. (1999): A theory of model specification 
inference. Talk transparencies: Joint Statistical Meetings, Baltimore, August, 
1999.  

[6] Cleveland, W.S. (2001): Data science: An action plan for expanding the 
technical areas of the field of statistics. International Statistical Rev., 69, 21-
26.  

[7] De Veaux, R.D. and Velleman, P.F. (2004): IntroStats. New York: Pearson.  

[8] Devore, J.L. (2000): Probability and Statistics for Engineering and the 
Sciences. Fifth Edition. Duxbury: Pacific Grove. 

[9] Efron, B. (1979): Bootstrap methods: Another look at the jackknife. Annals of 
Statistics, 1, 1-26. 

[10] Efron, B. (1993): Statistics in the 21st century. Statistics and Computing, 3, 
380-382. 

[11] Efron, B. (1998): R. A. Fisher in the 21st century.  Statistical Science, 13, 95-
114. 

[12] Efron, B. and Tibshirani, R.   (1997): Computer-intensive statistical methods.  
Encyclopedia of Statistical Sciences, 1, 139-148. 

[13] Fisher, N.I. (2001): Graphical assessment of dependence:  Is a picture worth 
100 tests? American Statistician, 55, 233-239. 

[14] Friedman, J.E. (1999): The role of statistics in the data revolution. Bulletin of 
the International Statistical Institut.   52nd Session. 1, 121-124.  

[15] Freedman, D., Pisani, R., and Purves, R. (1998):  Statistics. Third Edition. 
New York: Norton. 

[16] Hoaglin, D.C., Mosteller, F.,  and Tukey, J.W. (Ed) (1991): Fundamentals of 
Exploratory Analysis of Variance. NJ: Wiley-Interscience, Somerset. 

[17] Kettenring, J. (1997): Shaping statistics for success in the 21st Century. JASA, 
92, 1229-1234. 

[18] McLachlan, G.J. and Krishnan, T. (1997): The EM Algorithm and Extensions. 
NJ: Wiley-Interscience, Somerset. 



108 K. Laurence Weldon 

[19] Moore, D.S. (2001): Undergraduate programs and the future of academic 
statistics. American Statistician, 55, 1-6.  

[20] Moore, D.S., Cobb, G.W., Garfield, J., and Meeker, W.Q. (1995): Statistics 
education fin de Siècle. The American Statistician, 49, 250-260.  

[21] Moore, D.S. and McCabe, G.P. (1993): Introduction to the Practice of 
Statistics. Second Edition. NY: Freeman. 

[22] Simon, J. (1993): Resampling:  The “New Statistics”.  Wadsworth.  

[23] Tukey, J. W. (1962): The future of data analysis. The Annals of Mathematical 
Statistics, 33, 1-67. 

[24] Tukey, J.W. (1997): More honest foundations for data analysis. Journal of 
Statistical Planning and Inference, 57, 21-28. 

[25] Weldon, K.L. (2001): Informal probability in the first service course. 
Unpublished manuscript. (Weldon@sfu.ca) 

[26] Weldon, K.L. (2004): Experience with a case-oriented introductory course in 
statistics. Unpublished manuscript.  (Weldon@sfu.ca)  

[27] Wild, C.J and Seber, G.A. (2000): Chance Encounters: A first Course in Data 
Analysis and Inference. New York: Wiley.  


