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Less Parametric Methods In Statistics

K. Laurence Weldoh

Abstract

Despite forty years of revolution in the tools dahie for statistical
analysis, the current academic tradition in statésts remarkably similar to
the pre-computer tradition. This tradition is rodtien parametric modeling,
estimation, and testing, and optimal proceduregthas these models. The
paper argues for a shift in emphasis away from mpateéc modeling and
estimation to graphical summary, from omnibus optitechnigues to those
that are more context-specific, and from goals bfeotivity to goals of
revelation. It is suggested that the emphasis atistical education should
be rebalanced to reflect certain modern computeetdechniques.

1 Introduction

It is widely recognized that the advent of the cotepthas changed the scope of
the statistics discipline (Efron, 1993; Moore et B995; Kettenring, 1997; Tukey
1997; Cleveland, 2001; Moore, 2001). However thare still aspects of the

theory currently taught as essential basics, thaeweotivated in pre-computer
times, but whose relevance in the modern contexdimsinishing. Some new

computer-based methods that tend to be portrayeseesnd-choice alternatives
need to be re-appraised and upgraded in statusrt ekample, the power of

resamplinghas been gaining momentum, especially since thdntank paper on

the bootstrap by Efron (1979). Implications of thesampling idea for the

teaching of introductory statistics has been str@$seSimon (1993).

In addition to the impact of resampling on statatieducation and practice,
the increasing importance of graphical methods \{€nd, 1993; Bowman, 1997,
Fisher, 2001), simulation (Efron, 1993), algorittrmethods (McLachlan, 1997),
exploratory data analysis (Tukey, 1997; and Hoagliralet1991), and Bayesian
inference (Efron, 1998) have all derived from thgpact of computers. Are these
simply add-ons to the traditional theory, to be teglads peripheral topics and left
to advanced courses, or should they have a moreafonadtal impact? The answer
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matters because the future of statistics, both rith@md practice, depends upon
what is offered in the mainstream programs of statal education. The
conservatism of our teaching has already lost hugasaof data-based methods to
other disciplines, such as data mining (Friedm&99).

The mathematical theory of statistics has its raatshe pre-computer age.
The advent of the computer was seen to expand #amr of many of the
theoretical models originally proposed, like Bayesianalysis, Monte Carlo
methods, or even multiple regression. However tlagroeffect of computers was
to make entirely new approaches to statistical amalysasible (Efron and
Tibshirani, 1997). While many authors have drawnemtibn to these new
approaches, the developments have had a fairly mimpact on undergraduate
textbooks. Since these textbooks largely determiveecontent of their associated
courses, the teaching of statistics has been stoadapt to the modern context of
statistical practice. As Moore (1995: 251) hasgasjed:

"I suggest that the limited impact of technology teaching is rooted in
cultural resistance to change in colleges and unities, .."

A similar view is expounded by Chambers (1993) irs lnutline of the
difference between “greater statistics” and “lessttistics”. He makes it clear
that contemporary statistics instruction as relatimgnly to “lesser statistics”.

Kettenring (1997) says it this way “The question Elwito raise is whether the
21st century statistics discipline should be equatedstrongly to the traditional
core topics and activities as they are now. Peilbphgrefer a more inclusive
interpretation of statistics that reflects its siganterdisciplinary character.”

Finally, to emphasize the slow nature of change uo @iscipline, note that
Tukey (1962) warned many years ago of the narrow ticadithe discipline was
developing.

In the following sections, some topics that tendbeoviewed as central to our
discipline are re-examined in the light of the modstatistical context. We wish
to add to the growing doubt concerning the convardl approach to instruction in
statistical theory, a movement that has a long hysewven though its impact has
been small. In addition, we suggest with examples directions for change.
Course designers and textbook authors may wishneider these arguments.

2 Thechanging environment of statistical practice

2.1 Thetraditional focus on parametrics

Are parametric models and parameter values reaky ltbst way to summarize
distributions, and make comparisons of distribus®n The issue here is not

whether to use the t-test or the Mann-Whitney tesoth tests are concerned with
a location parameter, and the Mann-Whitney diffemk/on the model for the data,
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not in the feature of interest, the location partane The issue | want to address is
whether the feature of interest is really a simpdeameter value, or is it a whole
distribution? Has our focus on the estimation afgmeters been the result of
limited options for distribution summary in the abhse of modern computers and
software? Are investigators really interested idistribution’s parameters, or in

the whole distribution?

When the model is accepted, knowledge of the pat@mseproduces the
modeled distribution, but it is the actual distrlonn that is of interest to the
investigator. We have a choice of estimating a ebof(parametrically) or
estimating an underlying distribution (directly). Thalowing example will help
to illustrate the choice. Although the examplevigsrked through in some detalil, it
should be stressed that it is the general issutheffocus on parameters, not the
particular example, that is the issue here.

Imagine the outcomes shown in Figure 1 from a chhitrial aimed at
comparing the effectiveness of two treatments. ufyes the quantity measured is
something that is to be maximized for clinical etigeness. The clinician would
like to extract some comparative information abthg two treatments, without
assuming models for the responses.

Figure 1 shows dotplots of simulated samples ot 256 from N(0,1) and
N(1.3,3) distributions. The Treatment variablesresgnt responses of patients,
with a large value being a good response. The quess whether Treatment 2 is
better than Treatment 1, based on knowledge osetliata alone.

el gl LI 4ol I R Treatment 1
S S S S I R Treat ment 2
-4.0 -2.0 0.0 2.0 4.0 6.0

Figure 1: Data for a comparison of treatments.

The parametric approach to these data would bedofor a difference in mean
and/or standard deviation between the two treatmeimformally there does seem
to be a higher mean and a higher standard deviassociated with Treatment 2.
But how should this be verified with standard t@s#sn F test for the variance
ratio will certainly show the second distribution have the greater variability. If
we use a t-test or a Mann-Whitney test for a locatshift, in spite of the clear
violation of assumptions, we get equivocal resulésher than a clear indication of
the superiority of treatment #2. In the particulxample shown, the p-value is
about .05.
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The data is actually simulated from two normal dimitions:

1. N(0,1)

2. N(1.3,3)

In this case it can be verified that the shift iman will only be statistically
significant at the .05 level in approximately ondfhat the pairs of samples from
these populations, and this is true whether ones ube t-test or the Mann-
Whitney. So there is a very good chance that theareder in this situation would
be led to conclude that treatment 2 is no bettarawverage, than treatment 1, if
these inappropriate location tests were used. &temple we have chosen from
the hypothetical population for illustrative purpeses one that has a median
location differential: that is, there are equallgdquent samples that show more and
less differential than this one. In this sectiore @xplore both conventional and
unconventional analyses of these data.

A test of the variance ratio between the two sampleuld almost always be
significant, so a traditional conclusion could éasie that, not only is Treatment 2
iS no better on average, but it also appears tdebge consistent! On the other
hand, the researcher would justifiably believe, basa the graph, that for most
patients, treatment 2 provides a superior resuPerhaps the researcher would
invent a test that uses the observation that abalitof the treatment 2 responses
are better than the highest treatment 1 response, get the result published
anyway. This last-resort strategy is not recommen@edbvious reasons. The
point is thatthe traditional approach fails because of a teclatity that has
nothing to do with the science of the situatidime unnecessary assumption is the
assumption of homoscedasticity, or approximate hamadasticity, for the t-test or
for the Mann-Whitney test.

What would be an appropriate report of the abovee@mue? First of all, the
graph itself does contain all the information i thutcome of the experiment, and
the only question is how this information should eterpreted. This
interpretation is not entirely a statistical questiothere are some medical and
ethical issues involved. However, if we leave astiese issues, the graphical
display itself shows without question that the settreatment is associated with
generally higher values. We might suggest that theosd treatment looks very
much better. A radical suggestion might be thamfal tests are unnecessary.

However the issue of reproducibility can be studiednally without using a
parametric model for the data, through a re-sangp$itrategy. If one asks, "How
often will Treatment 2 produce a result that isesugr to Treatment 1?", based on
the data available, the resampling estimate is strmated probability of 0.65.
This is obtained by sampling with replacement fromcte distribution and
comparing pairs of simulated values.

The fact that this is greater than 50% suggestsstiperiority of Treatment 2,
but does not establish it. To discount samplingorerwe need to know the
precision of the 0.65 probability estimate. One wayackle this is with the raw
bootstrap. If one performs the same estimationcgdare starting with
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bootstrapped re-samples of each treatment resptmseesult is that the estimated
sampling distribution has a standard deviation @f80around the mean of 0.65,
and the distribution appears normal. This suggélsés the nominal proportion,
0.5, is 1.9 standard deviations below the obsemnmedn, 0.65, of this sampling
distribution, and that the superiority of Treatm@ns reasonably well established.

This information is based entirely on the particuiample of 50 data values,
and not at all on the models used for the simutabbthe data. We have not used
the specifications of the simulated data. Howevewe use the normal models
N(0,1) and N(1.3,3) to verify our resampling strategne can compute that the
true proportion (underlying our estimate of 0.65)swactually 0.66, and the
standard error of our bootstrapped estimation ptooe can also be found (by
simulation) to be about 0.12. This is somewhattgethan the 0.08 based on our
single sample in this case, indicating that thendigance of 0.66 might have been
missed from a single sample (with a one-sided Rwvalf about .10). However the
example was chosen to be marginally significant bsapeetric tests so it is not
surprising that it would be marginally significant bon-parametric approaches.

It might be argued that the above estimate of O$5tself a parametric
estimate that follows the traditional parametricpegach. However, we have
shown that, if one really must have a parametric many of the data, then it
should be in terms of parameters of practical edér~ outcome parameters rather
than parameters of the data distribution. Morepwvidre estimation of this
parameter and its variability was done without refere to a parametric model for
the data itself.

This data-based analysis would not be as reliableaaparametric-data-
modeling approaclwhen the parametric model for the data is corrdtbwever it
is an attractive alternative that is very adaptabla variety of contexts and very
easy to explain to a scientific researcher. Morepveravoids the technical
problems having nothing to do with the science lo¢ tsituation. Parametric
modeling of the data can be an unnecessary, anda@rdasing, step.

Let us now further review the parametric analysisto$ data with the "not-
parametric" analysis. The term "nonparametric" Wi# avoided here since it
suggests an approach such as the Mann-Whitneyhasig actually parametric in
the location parameter. As we mentioned, the M#fintney has equi-variance
assumptions too.

The not-parametric analysis focused on the realufeabf interest to the
clinician, the relative performance of a typical ipat under the two treatments.
The clinician is not really interested in how theeeage patient does, but rather in
how many patients will do better using TreatmentaBd how much better or
worse they will do. Of course, without intra-patieexperiments, we do not have
an accurate intra-patient estimate of the diffaenbut we do have an estimate of
how many patients do better (65%). Also, note thaitsinot the 65% that the
clinician will be most interested in: but the fabiat this is significantly greater
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than 50% will be of interest. The clinician canum to the graph of the data to
further interpret the outcome without worrying thiaé difference is due to chance.

The analysis just performed on this hypothetical dataot-parametric”. The
feature of interest to the clinician is describesl d@directly as possible. No
parametric model of the data itself is used forstdiescription. The degree of
consistency in the superiority of Treatment 2 israated. The reproducibility of
the superiority of Treatment 2 is assessed.

These results are achieved easily through use of paten intensive
techniques: graphical display, simulation, and rgdarng. All the problems
inherent in the usual "parametric" approach (whigttludes the so-called
"nonparametric” tests) are avoided.

If the distributions were markedly non-normal, asthwivery skewed
distributions, inappropriate conclusions could testom the parametric approach.
Note that this technical problem disappears whendistribution is considered as
a whole, and a not-parametric approach is used.

We recommended a graphical display as an importart pf the data
summary.

For many purposes, graphical displays are adequateitdition summaries,
and allow efficient communication of distributionsT'he ability to communicate
sample distributions graphically makes a numericanary, via parametric
estimates, less important. Moreover, numerical nmi@tion can still be
communicated graphically, but in a less-restrictvay. For example, estimated
guartiles can be portrayed graphically along with theta values themselves.
Estimates of location and scale parameters aréefa informative than the entire
distribution, portrayed graphically. The reputed @#ncy of parametric
descriptions is questionable in an age of easy gcaprsummaries provided
through software.

The overall suggestion from this example is this:a world of easy access to
powerful statistical software, parametric summarytioé observed data is often
inappropriate. Information from data-based studiesoften best summarized
graphically, and questions of reproducibility can dsked with respect to whole
distributions, and not merely with respect to certgilarametric summaries.
Statistical practice seems to be evolving towartssa parametric approach.

2.2 Thefocuson estimates of regression coefficients

Regression is another area where the focus on mdessnmay be overdone.
Regression methods are often proposed for studyretationships between
variables". See for example Devore (2000: 488)pMoand McCabe (1993: 117),
Wild and Seber (2000: 503). Based on the modelSX + e, we want to study the
relationship between X and Y. However, a more [g®o®bjective is revealing:
regression models are used either to predict Y fignor to study the model that
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would do this prediction. When X is random and merely want to describe the
relationship between X and Y, with no focus on pe&dn, then minimizing the
sum of squares oY -Y is not appropriate. If a fit were required indlsituation,
the least squares approach should find a fit wim@himizes the sum of squares of
||Y—\A(D ||, the Euclidean distances of data points to ittedfline. Such a fit is not
called regression, and it is certainly not suited prediction or describing a
predictive relationship. Regression theory assupresliction of Y from X, or a
predictive model for Y conditional on X, is requite We will leave the topic of
general “fitting a curve to points”, requiring tiperpendicular distances, and focus
on regression prediction, based on Y|X.

What we do with our predictive fit depends on wtesttve are interested in the
ability to predict Y from X, or in the detection abnsistent predictors X of Y. In
the former, we focus o -Y to judge the quality of the model, whereas in the
latter, the actual coefficients of X are of primanyerest.

In the case of our actually using the fit for prdn, the estimate of the
regression coefficients is really of minor intere$¥e simply want the predictor to
work well, and how this is achieved is not so intpaot. The problem of
colinearity is not really a problem in this settirggnce interpretation of the
predictive equation is not important as long as phedictions are accurate. In
other words, estimates ¢f in this setting are not very useful by themselves
they are only useful as employed in the predicegaation. There is no need in
this case for confidence intervals fgf .

On the other hand, if our interest is in the idgaation of useful predictors, to
find out what variables actually do make a diffexerto our response variable Y,
then we usually frame the question as a null hypsiththats = 0. Again, the
estimation off3 is not of interest. Of course, the question dkether or not3 =
0 is unanswerable in a strict sense, and it magrgeed that an estimate &f is
more useful than a test of the hypotheS§is= 0. However, if the research question
is really whether an explanatory variable laay role in prediction, the hypothesis
test is really the more direct approach. Our mdshior testingB = 0 or any other
parametric statement have been criticized overydags from many directions, but
at least the question we are asking seems to begheone. A wrong question is
"Is the population value oB close enough to zero that we can conclude it ismakq
to zero?" In other words, estimation is not ourlgaahis context.

In some situations, it may be of interest to knowe tactual size of the
regression coefficient, but the suggestion is ttlas is fairly rare. Even in
comparisons of regression coefficients, when tHatiree importance of predictors
is desired, the question will often reduce to & tds § = 3, - £,=0. Even in this
situation, theestimateof regression parameters is not really of primatgrest.

These arguments suggest that interval estimatiofi of the regression model
Y =X +e€ is not really as informative as a focus on itsgreation would suggest.
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The estimation of regression coefficients is ndenfthe ultimate goal, but rather
an intermediate computation. Again, the focus @rametric estimation may
distract the statistician from the questions ofcpial importance.

Note that it is not the theory that is at fault éyebut rather the customary use
of the theory. So much emphasis has been putttingia parametric model for
the data, that thoughtful consideration of the rnfation that is the goal of the
analysis, is minimized. This emphasis appears Bcgece and in instruction. In
presenting statistical theory, we must not empledize model so much that
students forget that it is reality that we areng/ito describe, and that the model is
merely a simplified approximation. Moreover, ouptimization methods are
usually model-based, and a healthy disrespect dptifhal” procedures should be
encouraged, since the optimality is usually comahiéil on the model being correct.

In this section the failings of the data->paranetmodel->estimation of
parameters paradigm have been highlighted. We bae@ to suggest the relative
merit of the data->graphics->not-parametric summamny the suggestion is that
we give this more emphasis in our training of statal practitioners and
theoreticians.

2.3 The parametric view of prior knowledge

How should prior knowledge about data context iefloe data analysis? This
clearly depends on the purpose of the analysis. Blagesian approach is
appropriate for updating knowledge (either subjesdyi or objectively), while the
classical approach attempts to extract informafrom data that is context-free, or
in other words, free of prior belief. However nathapproach is very successful in
achieving its respective goal. The Bayesian apgratempts to summarize prior
knowledge with a prior distribution of a parametesereas prior information is
usually more complicated than that. The classigapraach incorporates prior
knowledge in the specification of a class of prabgbmodels from which a fit is
selected, but the impact of the prior informationthis case is quite hard to judge.
The robustness of the fit to the specificationtod tlass of probability models may
be viewed as a strength or a weakness, but either the impact is poorly
controlled.

The robustness movement attempted to solve thelgrolof model mis-
specification by arranging that the model spectima have little impact on
inference. However, researchers would ideally litw have the data-based
information combined with their prior information an organized way, as well as
having the data-based information separated ouse&ehers will act on the basis
of the combination of prior information and datajer if they only report the
information in the data itself. Even descriptitatsstics procedures can be altered
by prior information — for example the choice ofmoothing parameter in a non-
parametric smooth. It may be useful to explorehuds for incorporating prior
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information of all kinds into the analysis of dathut with a measure of the
sensitivity of the inference output to the priofarmation.

A start in the consideration of a theory incorpargt model-building into
statistical theory has been suggested by ClevelardiLiu (1999). They extend
the Bayesian idea of a prior &xternal informationthrough scientific knowledge,
such as linear or exponential growth, one judgesdtedibility of neighborhoods
of models. The Bayesian likelihood is extended etploration information
through data analysis, such as probability plotse ases intuition and graphical
techniques to judge the plausibility of data giveneighborhood of models. One
might call this "holistic statistics"! Cleveland@ Liu call it model specification
inference

Hierarchical Bayes models have been proposed tmnagplish this end.
However, this very mathematical approach seemsp@a@metric to capture all
prior information of general scientific value.

The goal of a purely objective method of extractimformation from data
should perhaps be set aside. As the disciplingatdfssics is used by an expanding
range of researchers, we should aim at exposindnaézards of subjectivity, rather
than trying to eliminate it from our analytical pesses. The value of intuition in
scientific progress is, with good reason, widelyide=d, and statistical methods
should adapt to this reality. We have been remindé the need for informal
inputs to data analysis by Cleveland (2001).

The argument in this section has been that the rporation of prior
knowledge into data analysis is still a very infainprocess, and current theories,
Bayesian or classical or other, still need a Idt development before the
informality can be reduced. We need to put lespleasis on optimal procedures
(conditional on the model being correct) and moretioe hazards of jumping to
conclusions.

2.4. Do statistical techniques provide the tools necessary for
decision-making?

When decisions depend on data-based informatiohishaubject to unexplained
variability, we try to reduce the impact of the en@inty as much as possible.
Such decisions are typically about whether two arensamples are from the same
population, or not. Our prior beliefs about thetstaf nature usually determine
what strength of evidence is required to changedhgeliefs. A surprising result
usually requires very strong evidence to changeapinion. In medical studies,
usually more than one study with strong evidencerequired to establish a
surprising result. The observed p-value that woatdually change a belief will
certainly depend on the strength of the prior Heli®ecision making must take
into account prior belief.
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Another factor affecting the strength of evidenoe & "significant” result is
the cost of making a wrong decision. Yet neithex gtrength of prior belief nor
the cost of wrong decisions is formally incorpocht@ito the p-value approach,
whether "significance testing" or "hypothesis tegti This reminds us that the p-
value approach is not a formal decision-making ptwre (in spite what we tell
our introductory students).

Statisticians have known for decades how to incoaf® loss functions and
prior belief into a decision-making procedure. Bue difficulty in specifying
these aspects of the decision-making framework stiantifically acceptable way
has retarded their widespread use. An interestaxgy tor senior undergraduates
"Making Hard Decisions" (Clemen and Reilly, 2009s been recently published
attempting to close this gap. Too many textbookemapt to portray the p-value
approach as a respectable decision-making procedurese textbooks give the
impression that the p-value approach is an objeatiethod for decision making.

However this objectivity is clearly an illusion. &lthoice of critical p-value is
arbitrary, and the definition of the null hypotiesnd alternative hypothesis is
based on prior belief. Moreover, since the cosmaking wrong decisions (or the
utility of making correct decisions) is usually ngerfectly known, correct
guantification of the decision-making process i$ msually possible.

Nevertheless, decision-making should incorporatesé¢h vaguely known
features as well as possible so that good decistansbe made. To back-off to the
part that can be done objectively and mechanicedlgms to be ill-advised. And
yet this is what we often urge our students andiagpesearchers to do. To be
acceptable to editors of scientific journals, datsed research conclusions must
be supported by traditional testing. Scientists wHo not understand the
limitations of traditional inference are strong adates for its use. But it is
teachers of statistics that generate this misguinidebf.

Textbook authors need to be more careful in desayibhow statistical testing
is to be used, and how it relates to decision-mgkirMoreover, we need to be
more flexible in our acceptance of the respectabidf the subjective aspects of
decision-making. In fact, we should be emphasizihg importance of these
subjective aspects of the process of decision-ngpkinder uncertainty. We also
need to publicize to journal editors the limitatsonf "tests of significance" for
evaluating whether or not a certain scientific @ame is worthy of publication.

This theme ties in to our overall theme of over-&@gs on parametric
models. If we suppose that the focus of data-basséarch is a decision about the
value of a parameter, in many cases we will havergimplified the science of the
situation too much.
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2.5 Theleast-squarescriterion

Is least squares a reasonable criterion for estomaind curve-fitting? Certainly
an important aspect of our theory of parametric aeliod) is the least-squares
criterion.

For numerical or graphical summary of a relatiopshetween two variables,
when one variable is considered dependent on anotlee usually search for the
function in our model class that minimizes the safrsquared deviations in our
data set, or sometimes a weighted sum of squaredatiens. There is an
implication in this criterion that our fit shouldythard to accommodate outlying
observations, because of the amplification effedcsquaring the deviations. The
practical implication of this is that a decisioneds to be made in the curve-fitting
process whether or not certain "outlying" pointe ao be ignored, at least
temporarily. This complicates the fitting procedukéethods robust to outliers like
the bisquare procedure as described by Clevela@g3)lmodify least squares in a
semi-objective way to avoid this complication. Thisquare approach iteratively
re-weights the data values according to the ressdulhe bisquare is just one of
many such procedures, but the idea is that proesdexist to improve on the
purely subjective decision to keep or set asidéageoutlying observations.

However, what at first may seem to be the methogickd problem of dealing
with outliers may actually be a problem with thedé squares criterion itself. Is
the squared distance of a data value from a prapdsereally the appropriate
contribution of the value to the measure of lackit? Perhaps a procedure for
seeking a conditional mode would be more generatlgeptable. This would be
based on nonparametric density-estimation proceduree smoothness parameter
in the density fit would allow us to effectively midy the least squares criterion.
Fits determined in this way can be assessed usisigual analysis, as usual. This
modal method is not seriously proposed as the andwe is mentioned as typical
of the kind of option available when least squaissquestioned. Modern
statistical software makes these options feasible.

The least squares criterion fits nicely with normalodels, maximum
likelihood estimation, the central limit theorem,immum variance unbiased
estimation, and the familiar averaging process. tBetmathematical tractability of
this criterion may have blinded us to the ease ofarflexible methods that have
been made feasible by modern software. The praaicgatistics should include
more of these smoothing kernel approaches to ettimaAvailable software
removes the algebraic and arithmetical obstacled,adso the problem of reporting
the result of such smoothes, since a graphical rtefg ideal. Nonparametric
smoothing should be recognized as a method ap@tapfor the general user, and
not only for advanced data analysis. Least squalemild be recognized as a
mathematically appealing technique that is gragudleing replaced as its
limitations for applied data analysis are recogdize
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3 Summary and proposal

Academics in statistics share a common interesaxiploring probability models,
developing methods for fitting models to data anakmg inferences about model
parameters. However this activity has led us intarger discipline which includes
graphical methods, data summary, research desiglomtory inference, and the
construction of complex simulation studies. Thus thiscipline as it is practiced
has undergone a major intellectual expansion -ibi# turf that is being claimed
by other disciplines (Friedman, 1999). We mustpadaur teaching traditions to
meet these new challenges. Our textbooks musttadape completely to the
modern world of computerized data analysis.

To be specific about the topics that need more eamish | suggest the
following topics be added to the early courses tair textbooks:

1. The limited role of parametric models and thepapunities for

resampling approaches to inference.

2. Nonparametric smoothing and the graphical repredion of

relationships among variables.

3. The influence of prior information of all kinas statistical procedures.

4. Data-based decision making and the contrast thighp-value approach.

5. Alternative loss functions to least squares d&ne impact on practice,

especially on the handling of outliers.

These extensions of our traditional material arggested to remove the
dependence of statistical practice on parametridet®ofor observed data. Other
current trends such as greater use of simulatiah resampling techniques have
not been discussed here but are covered in Sim@®3jland Weldon (2001).

Even the best popular textbooks used for undergradstatistics courses do
not have much to say about these topics (Moore Mo@abe, 1993; Freedman,
Pisani, and Purves, 1995); Wild and Seber, 2006ydpde, 2000, De Veaux and
Velleman, 2004). Work needs to be done to seedbehvery practical ideas and
tools can be presented successfully at the unddwgta level. Some preliminary
results from a course taught to first year studevith no prerequisites, in which
many of the recommended topics were included, shithas the material can be
absorbed (Weldon, 2004). It is not enough to inelutdese topics in graduate
courses and professional seminars. As Clevela@@l(Rsays:

"A very limited view of statistics is that it is @cticed by statisticians. ... The
wide view has far greater promise of a widespreatuénce of the intellectual
content of the field of data science. "



Less Parametric Methods in Statistics 107

Refer ences

[1] Bowman, AW and Azzalini, A. (1997)Applied Smoothing Techniques for
Data AnalysisOxford: Clarendon Press.

[2] Chambers, J.M. (1993). Greater of lesser stiags A choice for future
researchStatistics and Computin@, 182-184.

[3] Clemen, R.T and Reilly, T. (2001Making Hard DecisionsDuxbury: Pacific
Grove.

[4] Cleveland, W.S. (1993)Visualizing Data NJ: Hobart Press, Summit.

[5] Cleveland, W.S. and Liu, C. (1999): A theory ofiodel specification
inference. Talk transparencies: Joint Statisticaelings, Baltimore, August,
1999.

[6] Cleveland, W.S. (2001): Data science: An actiplan for expanding the
technical areas of the field of statisti¢sternational Statistical Rey69, 21-
26.

[7] De Veaux, R.D. and Velleman, P.F. (200#4jtroStats New York: Pearson.

[8] Devore, J.L. (2000):Probability and Statistics for Engineering and the
SciencesFifth Edition. Duxbury: Pacific Grove.

[9] Efron, B. (1979): Bootstrap methods: Anotheolaat the jackknifeAnnals of
Statistics 1, 1-26.

[10] Efron, B. (1993): Statistics in the 2Xentury.Statistics and Computing,
380-382.

[11] Efron, B. (1998): R. A. Fisher in the 21st teny. Statistical Sciencel3, 95-
114.

[12] Efron, B. and Tibshirani, R. (1997): Computetensive statistical methods.
Encyclopedia of Statistical Scien¢ds 139-148.

[13] Fisher, N.I. (2001): Graphical assessment e@paehdence: Is a picture worth
100 tests’American Statistician5, 233-239.

[14] Friedman, J.E. (1999): The role of statisticghe data revolutiorBulletin of
the International Statistical Institut.52'¢ Session1, 121-124.

[15] Freedman, D., Pisani, R., and Purves, R. ()1998tatistics.Third Edition.
New York: Norton.

[16] Hoaglin, D.C., Mosteller, F., and Tukey, J.{Ed) (1991):Fundamentals of
Exploratory Analysis of VarianceNJ: Wiley-Interscience, Somerset.

[17] Kettenring, J. (1997): Shaping statistics $niccess in the 21Century.JASA,
92, 1229-1234.

[18] McLachlan, G.J. and Krishnan, T. (199The EM Algorithm and Extensions.
NJ: Wiley-Interscience, Somerset.



108 K. Laurence Weldon

[19] Moore, D.S. (2001): Undergraduate programs dne future of academic
statistics American Statisticians5, 1-6.

[20] Moore, D.S., Cobb, G.W., Garfield, J., and Mee W.Q. (1995): Statistics
education fin de Siécld.he American Statisticiad9, 250-260.

[21] Moore, D.S. and McCabe, G.P. (1993ntroduction to the Practice of
Statistics.Second Edition. NY: Freeman.

[22] Simon, J. (1993)Resampling: The “New Statistics'Wadsworth.

[23] Tukey, J. W. (1962): The future of data an&dy3 he Annals of Mathematical
Statistics,33, 1-67.

[24] Tukey, J.W. (1997): More honest foundations tata analysisJournal of
Statistical Planning and InferencB7, 21-28.

[25] Weldon, K.L. (2001): Informal probability inhe first service course.
Unpublished manuscript. (Weldon@sfu.ca)

[26] Weldon, K.L. (2004): Experience with a caseeoted introductory course in
statistics. Unpublished manuscript. (Weldon@sfu.ca

[27] Wild, C.J and Seber, G.A. (200@hance Encounters: A first Course in Data
Analysis and InferencéNew York: Wiley.



