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an Autoregressive Error Component
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Abstract

Temporal variations in the incidence of rare diseases are a subject of great interest
to epidemiologists, who look for recognizable patterns andassociations with puta-
tive causal factors in order to gain aetiological clues. These data are typically char-
acterised by overdispersion and correlated errors, nevertheless the standard method
of analysis in this field has so far been the Poisson regression. The aim of this pre-
liminary study was to suggest the novel employment of a Bayesian nonparametric
model (based on a GLMM), a validated statistical approach, to the context of the es-
timation of childhood cancer incidence trends. The model includes fixed effect terms
(age and year of diagnosis) and a random effect vector, intended to represent smooth
variation over time, specified in the forward direction as a second order Gaussian
autoregressive component. The best use for the model proposed is as ”early warn-
ing” to epidemiologists for the identification of changes intrends. This and similarly
flexible models are in fact characterised by high sensitivity to changes of behaviour;
the price we must pay for such high a sensitivity being low specificity.

1 Introduction

Temporal variations in the incidence of childhood cancers have been the focus of several
studies in the past decade (Steliarova-Foucher et al., 2004). Overall, the published data
suggest an increasing trend, although there is wide variation both in the estimates provided
and in the methods of analysis. The incidence of all leukaemias, and especially Acute
Lymphoblastic Leukaemia (ALL), has been on the spotlight since it has been described to
be either increasing or stable over the last few decades. However, there are differences in
the time trends between and sometimes even within geographical areas. This is apparent
for the SEER studies, which include overlapping databases analysed with different sta-
tistical methods and epidemiological criteria, yielding different conclusions. Overall, the
most evident increases are in children about 3 years old, theage at which ALL incidence
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peaks, and in the precursor B-cell ALL subtype. It is also noteworthy that the increases
in incidence were greatest in the earlier years of observation, while incidence has been
more stable since the 80’s (Ries et al., 2004; Hjalgrim et al., 2003; Dreifaldt, Carlberg
and Hardell, 2004).

Changes in disease incidence over time are usually primarily attributed to changes in
risk factors, although they may also be influenced by changesin diagnostic or classifica-
tion procedures, differences in levels of ascertainment, or chance. Since little is known
on the aetiology of childhood leukaemia, it would be important to interpret correctly vari-
ations in incidence over time in order to determine whether such variations are due to
changes in diagnostic or classification procedures, or are related to putative causal fac-
tors. However, different risk factors may produce different time trends. In particular,
cancers that (primarily) have an infectious aetiology may show cyclical effects, whereas
cancers that (primarily) have a non-infectious aetiology are more likely to show gradual
monotonic increases (or decreases) over time.

In this study we analysed data on the incidence of childhood cancer in Piedmont (Italy)
during 1975-2001. Our focus was on ALL, since this is hypothesized to have an infectious
aetiology, but for purposes of comparison we also conductedsimilar analyses for selected
other childhood cancer sites (Acute non-Lymphoblastic Leukaemia (AnLL) in 1975-2001,
Central Nervous System (CNS) tumours, neuroblastoma (NB) and all cancer types in
1967-2001).

The standard method to estimate the Annual Percentage Change (APC) is by fitting
a Poisson regression to counts of new cases by using age classes and calendar year as
covariables. Such a model, including only linear terms, assumes that incidence rates
vary monotonically in time, and hence it is not suitable to detect changes in the direc-
tion of the incidence time trend. It is possible to fit Poissonmodels with both linear and
quadratic terms, and appropriately modified versions of age-period-cohort models have
been proposed as early as 1993 (Engeland et al., 1993; Molleret al., 2002), but they
have not become usual practice in time trend epidemiological analysis. Moreover, since
overdispersion commonly affects longitudinal count data,statistical methods have been
developed for the joint estimation of the regression parameters and the overdispersion pa-
rameter (e.g. Jowaheer and Sutradhar, 2002), but they have encountered relatively limited
success among epidemiologists.

We propose to use a Bayesian nonparametric smoother based ona GLMM with an
autoregressive error component as an alternative for disease trend estimation. Models
of this type include random terms in the linear predictor which allow accommodation of
overdispersion (frequently observed in practice). The attractiveness of these models lies
also in their non-restrictive assumptions about functional dependency on time (flexibility,
i.e. the time component is not parametrised at all) as opposed to the strong parametric as-
sumption implied by the standard GLM (monotony,i.e. the incidence rate ratio is constant
over time).
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2 Models for Poisson distributed variables

2.1 Fixed effects: The GLM

In standard epidemiological practice, cancer incidence time trends are analysed using
Generalised Linear Models (GLM) (McCullagh and Nelder, 1989). LetYi be the count of
new cancer diagnoses recorded in a time intervali of specified length (typically 1 year).
If Yi belongs to a Poisson process, then theYis are iid, with:

E[Yi] = µi, var[Yi] = E[Yi]. (2.1)

Moreover, let us assume that the dependence of the mean number of events on the covari-
able vectorxi be multiplicative, and hence choose a log-type link function:

log(µi) = ηi = βTxi; i = 1, . . . , n. (2.2)

Thus, the standard method to analyze cancer incidence ratesis by fitting a log-linear
model with fixed effects for age and calendar year (and optionally other covariables of
interest) to the two-way table of rates using Poisson regression with the logarithm of the
person-years denominators as an offset in the regression equation. The logarithm of the
mean number of cancers diagnosed in thejth age group during thekth year is assumed to
satisfy:

log(µjk) = log(pyrjk) + β ′

j + β ′′k, (2.3)

wherepyrjk denotes the person-years of observation,β ′

j denotes the fixed effect of age as
a factor andβ ′′ the fixed (log-linear) effect of calendar year as a metrical covariable.

Even though by log-linear models one usually means the log-linear relationship in
(2.2), and the variance assumption (2.1) is given less importance, both components of the
model would require checking.

2.2 Fix it with mixed: Approximate inference for GLMM’s

Very often, outcomes with a Poisson distribution are affected by overdispersion (violation
of assumption (2.1)). Moreover, the chosen functional formof the link between the linear
predictor and the expected values of the counts, logarithmic in this case, may not be ap-
propriate (violation of assumption (2.2)). Most likely, failure to describe data properly is
a consequence of both these effects, or even of an underlyingdependence among outcome
variables inherent in longitudinal studies (theYis are not iid). A proposed solution to these
is to adopt the framework of the Generalised Linear Mixed Model (GLMM). GLMM’s
are extensions of the GLM which include random effect terms in the linear predictor.

Breslow and Clayton (1993) specified the hierarchical modelas follows. Given an
unobserved vectorb of random effects, they assumed the observationsyi to be condi-
tionally independent with means depending on the linear predictor through a logarithmic
link function and conditional variances specified by a variance function and a dispersion
parameter:

E[yi|b] = µb
i , var[yi|b] = φv(µb

i). (2.4)

The random effects vectorb is assumed to have a multivariate normal distribution with
mean0 and covariance matrixD = D(θ) depending on an unknown vectorθ of variance
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components. The dispersion parameterφ is either fixed at unity or estimated together with
θ. If xi andzi are explanatory variables vectors associated with the fixedand random
effects, respectively, and denoting the observation vector by y = (y1, . . . , yn)T and the
design matrices with rowsxT

i andzT
i by X andZ, then the model is completed by:

log(E[y|b]) = log(µb) = ηb = Xβ + Zb. (2.5)

The general specification used in (2.5) turns into the following when referring to a model
for counts of cancer diagnoses in thejth age group andkth calendar year:

log(µjk) = log(pyrjk) + β ′

j + β ′′k + σuk. (2.6)

Equation (2.6) differs from (2.3) by the addition of the termσuk. The fixed effect trend
β ′′ and the random effect vectoru model two different aspects of the variation of rates
with calendar year. In particular, the model foru represents smooth variation over time
and is specified in the forward direction as a Gaussian autoregressive model, assuming
the second differences are independent normal variables.

In order to overcome the technical problems lying in the integration involved in the
maximisation of the quasi-likelihood and its partial derivatives, Breslow and Clayton
(1993) provided a unified framework in which to consider Penalised Quasi-Likelihood
(PQL) and Marginal Quasi-Likelihood (MQL), two closely related approximate meth-
ods of inference in GLMM’s. MQL (or Generalised Estimating Equations - GEE) is the
method of choice when interest is focused on the marginal relationship between covari-
ables and response, and the random effect model serves primarily to suggest a plausible
covariance structure, that enables one to get reasonably efficient estimating equations for
mean value parameters. By contrast, PQL is the method of choice for estimating pa-
rameters in the hierarchical model, especially when attention is focused on the random
effects.

2.3 A Bayesian approach

Besag, York, and Mollié (1991) subsequently developed a fully Bayesian approach to this
class of regression problems, whose procedures avoid the need for numerical integration
by taking repeated samples from the posterior distributions using Gibbs sampling tech-
niques. An attractive feature of the Bayesian approach is its flexibility for full assessment
of the uncertainty in the estimated random effects and functions of model parameters.
Moreover, by means of the prior distribution, they can contribute information on variance
components, and this represents an advantage over approximate quasi-likelihood tech-
niques especially when the response probabilities are small and the data highly discrete.
In the past decade, there have been enormous advances in the use of Bayesian methodol-
ogy for analysis of epidemiologic data, and there are now many practical advantages to
the Bayesian approach (Dunson, 2001; Lilford and Braunholtz, 2000), besides the ones
just mentioned. Bayesian models can easily accommodate unobserved variables. The
use of prior probability distributions represents a powerful mechanism for incorporating
information from previous studies and for controlling confounding. Posterior probabil-
ities can be used as easily interpretable alternatives to p values (Aickin, 2004). Recent
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developments in Markov Chain Monte Carlo (MCMC) methodology facilitate the imple-
mentation of Bayesian analyses of complex datasets containing missing observations and
multidimensional outcomes (Box and Tiao, 1992; Carlin and Louis, 2000).

In particular, as for generalised linear mixed models (withstructured and unstruc-
tured random effects), the Bayesian approach allows to consider all different types of
covariables from a unified viewpoint. Usual covariables with fixed effects, metrical co-
variables with nonlinear effects (such as time scales with nonparametric trend or seasonal
effect), unstructured random effects and spatial covariables are all treated by assigning
Markov random field smoothness priors with common structurebut different degrees of
smoothness to corresponding effects (Fahrmeir and Lang, 2001). Data driven choice of
smoothing parameters is automatically included.

For Bayesian semiparametric inference, the vectors of structured and unstructured ran-
dom effectsb and the parametersβ are all considered as random variables. Observation
models are supposed to be conditional upon these random variables, and have to be sup-
plemented by appropriate prior distributions. Priors for the unknown functions depend on
the type of the covariables and on prior beliefs about smoothness of the structured effects.
Priors for time scales and metrical covariables are based onGaussian smoothness priors
that are common in dynamic GLMM’s (Breslow and Clayton, 1993).

For a metrical covariatei (time), with equally-spaced observationsi = 1, . . . , n, com-
mon priors for smooth functions are, respectively, first or second order random walk mod-
elsf(i) = f(i − 1) + e(i) or f(i) = 2f(i − 1) − f(i − 2) + e(i), with Gaussian errors
e(i)∼N(0, τ 2), and diffuse priorsf(1) ∝ const andf(2) ∝ const for initial values. Both
specifications act as smoothness priors that penalise too rough functionsf . A first order
random walk penalises abrupt jumpsf(i) − f(i − 1) between successive states, and a
second order random walk penalises deviations from the linear trend2f(i−1)−f(i−2).

For a fully Bayesian analysis, variance or smoothness parametersτ 2
j are also consid-

ered as unknown and estimated simultaneously together withthe unknown functions. A
common choice are highly dispersed inverse gamma priorsp(τ 2)∼IG(a, b), with very
smalla andb, e.g. 10−4. The Bayesian model specification is completed by the following
conditional independence assumptions:

i for given covariables and parametersf , β andb, observationsyi are conditionally
independent;

ii priors p(fj|τ
2
j ), j = 1, . . . , n, p are conditionally independent;

iii priors for fixed and random effects, and hyperpriorsτ 2
j , j = 1, . . . , n, are mutually

independent.

An equivalent model to (2.6) for autoregressive smoothing of relative risks can be
specified in the Bayesian framework by the following model and prior distributions:

yi∼Poisson(µi)

log(µi) = log(pyri) + β ′

i + ui

u1∼N(0, 0.000001τ)

u2|u1∼N(0, 0.000001τ)

uk|u1,...,k−1∼N(2uk−1 − uk−2, τ), k > 2
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where thejth age group andkth calendar year notation has been substituted by a single
indexing over thei = j×k number of cells. Hereafter we shall refer to this model as to
the Bayesian AutoRegressive (BAR) model, and compare it to the ’standard’ one stated
in (2.3).

For computational reasons, Breslow and Clayton (1993) impose constraints on their
random effectsui in order that their mean and linear trend are zero, and counter these
constraints by introducing a linear termβ ′′k (with k the calendar year), and allowing
unrestrained estimation ofβ ′

j. Since we allow free movement of theu’s, we dispense with
the linear term, and impose a ’corner’ constraintβ ′

1 = 0. The graph is shown in Figure 1.
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Figure 1: Graphical model for the Bayesian specification, using the directed autoregressive
representation.

The model was implemented with WinBugs (Spiegelhalter, Thomas, and Best, 1999),
according to the above specification. Goodness-of-fit was assessed through the Deviance
Information Criterion (DIC) (Spiegelhalter et al., 2002) for both models.

3 Data

We analysed data from the Childhood Cancer Registry of Piedmont (CCRP). The CCRP is
the oldest and largest paediatric population-based CancerRegistry active in Italy. Data on
incident cases of cancer in children (aged less than 15 years) are available over a 35-year
period from 1967 to 2001. Clinical data on diagnosis and treatment are available together
with personal information. The criteria for inclusion of cases in the CCRP database have
been consistent and the quality of ascertainment has been satisfactory over the period
covered by our investigation (Magnani et al., 2003). Countsof new cases of childhood
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cancer by sex, age class (0, 1-4, 5-9, 10-14 years) and calendar year of diagnosis were
used to compute annual incidence rates (per million children per year) referring to the
population resident in Piedmont in 1967-2001. We considered the following diagnostic
categories: ALL (n = 688), AnLL (n = 145), CNS tumours (n = 753), NB (n = 254), all
cancers together (n = 3360). Analyses for ALL and AnLL were limited to 1975-2001
in order to exclude the effect of improvement in diagnostic methods of the early 70’s
(Magnani et al., 2003).

4 Results

Table 1 presents goodness-of-fit statistics for the standard Poisson and the BAR models,
for the cancer types considered in the analysis.

Figures 2-4 show observed and expected age-adjusted cancerincidence ratesvs. cal-
endar year of diagnosis for all cancer types (Figure 2), CNS tumours and NB (Figure 3)
in 1967-2001, and ALL and AnLL in 1975-2001 (Figure 4). Ratesexpected by BAR
are compared to the ones expected by the standard GLM used forcancer trend analysis
(Poisson regression).

Table 1: Goodness-of-fit statistics for the standard Poisson and theBAR model.p+

D is the
Bayesian measure of model dimensionality (Spiegelhalter et al., 2002).

Poisson model BAR model

Cancer type DIC p+

D DIC p+

D

ALL 434 7 457 20

AnLL 317 6 331 13

CNS tumours 573 8 596 20

Neuroblastoma 418 6 442 19

All cancer types 842 12 861 24

As expected, given its larger flexibility, BAR displays a more complex behaviour and
follows more closely the observed data than the Poisson model. When all cancers are
pooled together, the BAR model shows an inflection in the central years of the period
under observation (Figure 2), but there are no large differences in the fit achieved (Table
1). For cancers of the nervous system (both CNS tumours and neuroblastoma), expecta-
tions do not differ greatly (Figure 3): the Poisson regression and BAR models yield very
similar patterns with similar goodness-of-fit (Table 1).

For ALL, both the Poisson regression and BAR models again fitted the data quite well,
with a slightly smaller error for the BAR model (sum of squared Pearson residuals: Pois-
son: 1041, BAR: 822). The expectations do not differ greatlyfor most of the individual
years considered, but the overall shape of the models is different (Figure 4). In particu-
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Figure 2: Childhood Cancer Registry of Piedmont. Observed (dots) andexpected age - adjusted
incidence rates (IR)vs. calendar year of diagnosis for children (0-14 years of age) for all cancer

types in 1967-2001. Expectations by the Bayesian autoregressive model (BAR, thick straight
line) and the Poisson model (dashed line).

lar, the BAR expected rates do not exhibit a monotonically increasing pattern: in the first
half of the study period they oscillate around an average value of 35 cases/106 years, then
show a sharp increase in the years from 1989 until 1997, and finally begin to decline from
1998. Figure 4 also shows the corresponding analyses for AnLL (lower curves). For this
cancer type, the Poisson and BAR models produced similar patterns.

5 Discussion

In this study CCRP data on the incidence of ALL, and other selected childhood cancer
sites, were analysed using a Bayesian approach, in order to assess the possibility of a
deviation from the monotonic increasing trend necessarilyexpected by standard regres-
sion methods, given their restrictive assumptions. Both the Poisson and BAR models
showed increases in incidence for ALL. However, while the former was bound to lead to
monotonically increasing rates, the latter’s expectations showed broad oscillations. On
the other hand, the two approaches produced very similar patterns for AnLL, nervous
system tumours and all cancer types.

In standard epidemiological practice, the choice between statistical models is usually
carried out througha posteriori criteria, such as goodness-of-fit statistics and residual
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Figure 3: Childhood Cancer Registry of Piedmont. Observed (dots) andexpected age - adjusted
central nervous system tumour (CNS, upper curves) and neuroblastoma (NB, lower curves)

incidence rates (IR)vs. calendar year of diagnosis for children (0-14 years of age) in 1967-2001.
Expectations by the Bayesian autoregressive model (BAR, thick straight line) and the Poisson

model (dashed line).

analysis, and sometimes alsoa priori considerations about the plausibility of model as-
sumptions.

This paper shows an example of the typical pitfall resultingfrom relying onto a pos-
terior evaluation of the model fit without considering the model assumptions in the first
place. In the above application, both the standard Poisson and the BAR model fit the same
data equally well (thus providing no useful statistical criteria for the choice of model) and
yet for ALL they lead to different interpretations of the shape of the time trends. The Pois-
son model with fixed-effects only is not an appropriate tool to give a faithful description
of the incidence data. Poisson regression fixes the overall shape of the curve, resulting in
more weight to long-term trends, while BAR is more flexible and hence more responsive
to short-term changes. Besides being more correct for this application, the latter is a safer
methodology for descriptive trend analysis, and it might disclose unsuspected behaviour
of the disease.

Flexible methods (i.e. compatible with non-linear behaviour) are thus capable of pro-
viding an ”early warning” of changes in the direction of the incidence trend - high sen-
sitivity. On the other hand, a potential drawback of this andsimilar methods is that their
estimates are very sensitive to short term fluctuations, andmay therefore be more suscep-
tible to random variation - low specificity.

Bearing these considerations and limitations in mind, the findings presented here are
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Figure 4: Childhood Cancer Registry of Piedmont. Observed (dots) andexpected age-adjusted
acute lymphoblastic leukaemia (ALL, upper curves) and acute non lymphoblastic leukaemia

(AnLL, lower curves) incidence rates (IR)vs. calendar year of diagnosis for children (0-14 years
of age) in 1975-2001. Expectations by the Bayesian autoregressive model (BAR, thick straight

line) and the Poisson model (dashed line).

of interest to epidemiologists since they are consistent with the hypothesis of an infectious
aetiology for ALL (Kinlen, 1988; Greaves, 1988; Alexander et al., 1998), given that
infections commonly exhibit cyclical behaviour in time, and the short latency time for
childhood cancer means that cancers with an infectious aetiology may also be expected to
show cyclical time trends. CNS tumours and NB (Figure 3), andAnLL (Figure 4), which
are all considered to have a non-infectious aetiology, do not show similar oscillations.

Since we do not believe that cancer rates may change at a constant rate over a long
period of time, we deem it more appropriate and meaningful tocharacterise the trend with
a nonparametric smoother, which also allows us to detect recent changes in trend.
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