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Abstract

Temporal variations in the incidence of rare diseases arbjad of great interest
to epidemiologists, who look for recognizable patterns assbciations with puta-
tive causal factors in order to gain aetiological clues. Sehdata are typically char-
acterised by overdispersion and correlated errors, Heleds the standard method
of analysis in this field has so far been the Poisson regmes3ibe aim of this pre-
liminary study was to suggest the novel employment of a Bapesonparametric
model (based on a GLMM), a validated statistical approazthé context of the es-
timation of childhood cancer incidence trends. The modguites fixed effect terms
(age and year of diagnosis) and a random effect vector,detto represent smooth
variation over time, specified in the forward direction ascaasnd order Gaussian
autoregressive component. The best use for the model @dpsss "early warn-
ing” to epidemiologists for the identification of changedrends. This and similarly
flexible models are in fact characterised by high sensjticitchanges of behaviour;
the price we must pay for such high a sensitivity being lowcijumty.

I ntroduction

Temporal variations in the incidence of childhood cancergetbeen the focus of several
studies in the past decade (Steliarova-Foucher et al.,)2@erall, the published data
suggest an increasing trend, although there is wide vaniaith in the estimates provided
and in the methods of analysis. The incidence of all leukasmand especially Acute
Lymphoblastic Leukaemia (ALL), has been on the spotlight¢siit has been described to
be either increasing or stable over the last few decadeseikawthere are differences in
the time trends between and sometimes even within geogadrieas. This is apparent
for the SEER studies, which include overlapping databasal/sed with different sta-

tistical methods and epidemiological criteria, yieldirifjetent conclusions. Overall, the
most evident increases are in children about 3 years oldigeet which ALL incidence
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peaks, and in the precursor B-cell ALL subtype. It is alscemamirthy that the increases
in incidence were greatest in the earlier years of obsemvatvhile incidence has been
more stable since the 80’s (Ries et al., 2004; Hjalgrim et24l03; Dreifaldt, Carlberg
and Hardell, 2004).

Changes in disease incidence over time are usually priyrettiibuted to changes in
risk factors, although they may also be influenced by chamgémgnostic or classifica-
tion procedures, differences in levels of ascertainmenthance. Since little is known
on the aetiology of childhood leukaemia, it would be impnotta interpret correctly vari-
ations in incidence over time in order to determine whethmhsvariations are due to
changes in diagnostic or classification procedures, oredaded to putative causal fac-
tors. However, different risk factors may produce diffédréme trends. In particular,
cancers that (primarily) have an infectious aetiology magve cyclical effects, whereas
cancers that (primarily) have a non-infectious aetiologyraore likely to show gradual
monotonic increases (or decreases) over time.

In this study we analysed data on the incidence of childheoder in Piedmont (Italy)
during 1975-2001. Our focus was on ALL, since this is hypsited to have an infectious
aetiology, but for purposes of comparison we also condwsitedar analyses for selected
other childhood cancer sites (Acute non-Lymphoblastiddaemia (AnLL) in 1975-2001,
Central Nervous System (CNS) tumours, neuroblastoma (M#8)adl cancer types in
1967-2001).

The standard method to estimate the Annual Percentage EHARE) is by fitting
a Poisson regression to counts of new cases by using age<lasd calendar year as
covariables. Such a model, including only linear termsuaes that incidence rates
vary monotonically in time, and hence it is not suitable ttedechanges in the direc-
tion of the incidence time trend. It is possible to fit Poissomdels with both linear and
guadratic terms, and appropriately modified versions ofaged-cohort models have
been proposed as early as 1993 (Engeland et al., 1993; Muligl, 2002), but they
have not become usual practice in time trend epidemiolbgitalysis. Moreover, since
overdispersion commonly affects longitudinal count datatistical methods have been
developed for the joint estimation of the regression pataraeand the overdispersion pa-
rameter €.g. Jowaheer and Sutradhar, 2002), but they have encountéagidetly limited
success among epidemiologists.

We propose to use a Bayesian nonparametric smoother based@GoMM with an
autoregressive error component as an alternative for sksgand estimation. Models
of this type include random terms in the linear predictorahhallow accommodation of
overdispersion (frequently observed in practice). Theaetiveness of these models lies
also in their non-restrictive assumptions about functidependency on time (flexibility,
i.e. the time component is not parametrised at all) as opposdrbtsttong parametric as-
sumption implied by the standard GLM (monotong, the incidence rate ratio is constant
over time).
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2 Modesfor Poisson distributed variables

2.1 Fixed effects: The GLM

In standard epidemiological practice, cancer incidencee tirends are analysed using
Generalised Linear Models (GLM) (McCullagh and Nelder, 9P& etY; be the count of
new cancer diagnoses recorded in a time inteiadlspecified length (typically 1 year).
If Y; belongs to a Poisson process, thenltleeare iid, with:

B =,  varlvj] = B[V (2.1)

Moreover, let us assume that the dependence of the mean nofdwents on the covari-
able vectorx; be multiplicative, and hence choose a log-type link furrctio

log() =m; = 6" i=1,...,n. (2.2)

Thus, the standard method to analyze cancer incidence imatgsfitting a log-linear
model with fixed effects for age and calendar year (and optiprother covariables of
interest) to the two-way table of rates using Poisson regvasvith the logarithm of the
person-years denominators as an offset in the regressi@tieq. The logarithm of the
mean number of cancers diagnosed injtheage group during thith year is assumed to
satisfy:
log(pjx) = log(pyrj) + B + 8"k, (2.3)

wherepyr;; denotes the person-years of observatijrdenotes the fixed effect of age as
a factor and?” the fixed (log-linear) effect of calendar year as a metricabeiable.

Even though by log-linear models one usually means theitasat relationship in
(2.2), and the variance assumption (2.1) is given less itapoe, both components of the
model would require checking.

2.2 Fixit with mixed: Approximateinferencefor GLMM’s

Very often, outcomes with a Poisson distribution are affddty overdispersion (violation
of assumption (2.1)). Moreover, the chosen functional fofriine link between the linear
predictor and the expected values of the counts, logarglmithis case, may not be ap-
propriate (violation of assumption (2.2)). Most likelyjltae to describe data properly is
a consequence of both these effects, or even of an undedgpgndence among outcome
variables inherent in longitudinal studies (fis are notiid). A proposed solution to these
is to adopt the framework of the Generalised Linear Mixed MIdG6LMM). GLMM’s
are extensions of the GLM which include random effect temtfe linear predictor.

Breslow and Clayton (1993) specified the hierarchical medefollows. Given an
unobserved vectdb of random effects, they assumed the observatigrte be condi-
tionally independent with means depending on the lineadiptar through a logarithmic
link function and conditional variances specified by a wvac@afunction and a dispersion
parameter:

Ely;lb] =y, warly;|b] = ¢v(u). (2.4)
The random effects vectdr is assumed to have a multivariate normal distribution with
mean0 and covariance matri® = D(6) depending on an unknown veciof variance
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components. The dispersion parameiés either fixed at unity or estimated together with
0. If x; andz; are explanatory variables vectors associated with the fxxetrandom
effects, respectively, and denoting the observation vemoy = (yy,...,y,)” and the
design matrices with rows! andz! by X andZ, then the model is completed by:

log(E[y|b]) = log(1®) = n® = X3 + Zb. (2.5)

The general specification used in (2.5) turns into the fakhgwvhen referring to a model
for counts of cancer diagnoses in fitie age group an#éth calendar year:

log(pjx) = log(pyrjr) + B; + B"k + ouy. (2.6)

Equation (2.6) differs from (2.3) by the addition of the tesm,. The fixed effect trend
4" and the random effect vectar model two different aspects of the variation of rates
with calendar year. In particular, the model forepresents smooth variation over time
and is specified in the forward direction as a Gaussian agressive model, assuming
the second differences are independent normal variables.

In order to overcome the technical problems lying in thegraéon involved in the
maximisation of the quasi-likelihood and its partial datives, Breslow and Clayton
(1993) provided a unified framework in which to consider Hieed Quasi-Likelihood
(PQL) and Marginal Quasi-Likelihood (MQL), two closely ad¢d approximate meth-
ods of inference in GLMM’s. MQL (or Generalised Estimatinguations - GEE) is the
method of choice when interest is focused on the marginatioglship between covari-
ables and response, and the random effect model servegibyitoasuggest a plausible
covariance structure, that enables one to get reasondialigef estimating equations for
mean value parameters. By contrast, PQL is the method oteHor estimating pa-
rameters in the hierarchical model, especially when atiens focused on the random
effects.

2.3 A Bayesian approach

Besag, York, and Mollié (1991) subsequently developedlg Bayesian approach to this
class of regression problems, whose procedures avoid #tefoenumerical integration
by taking repeated samples from the posterior distribstisgsing Gibbs sampling tech-
niques. An attractive feature of the Bayesian approach feiibility for full assessment
of the uncertainty in the estimated random effects and fonstof model parameters.
Moreover, by means of the prior distribution, they can atnte information on variance
components, and this represents an advantage over apjptexquasi-likelihood tech-
niques especially when the response probabilities arel smalthe data highly discrete.
In the past decade, there have been enormous advances sethéBayesian methodol-
ogy for analysis of epidemiologic data, and there are nowynmaactical advantages to
the Bayesian approach (Dunson, 2001; Lilford and Braugh@®00), besides the ones
just mentioned. Bayesian models can easily accommodatesenced variables. The
use of prior probability distributions represents a powkeniechanism for incorporating
information from previous studies and for controlling comhding. Posterior probabil-
ities can be used as easily interpretable alternatives &iyes (Aickin, 2004). Recent
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developments in Markov Chain Monte Carlo (MCMC) methodgltarilitate the imple-
mentation of Bayesian analyses of complex datasets camgaimissing observations and
multidimensional outcomes (Box and Tiao, 1992; Carlin andik, 2000).

In particular, as for generalised linear mixed models (wgittuctured and unstruc-
tured random effects), the Bayesian approach allows toidgensll different types of
covariables from a unified viewpoint. Usual covariabledwiixed effects, metrical co-
variables with nonlinear effects (such as time scales wotiparametric trend or seasonal
effect), unstructured random effects and spatial covlesabre all treated by assigning
Markov random field smoothness priors with common struchurtedifferent degrees of
smoothness to corresponding effects (Fahrmeir and Lar@j,)2Mata driven choice of
smoothing parameters is automatically included.

For Bayesian semiparametric inference, the vectors atstred and unstructured ran-
dom effectsb and the parametersare all considered as random variables. Observation
models are supposed to be conditional upon these randoabiesj and have to be sup-
plemented by appropriate prior distributions. Priors f@ tinknown functions depend on
the type of the covariables and on prior beliefs about snraesth of the structured effects.
Priors for time scales and metrical covariables are baseé@aussian smoothness priors
that are common in dynamic GLMM'’s (Breslow and Clayton, 1993

For a metrical covariate(time), with equally-spaced observatians 1, ..., n, com-
mon priors for smooth functions are, respectively, firstamand order random walk mod-
elsf(i) = f(e — 1) +e(@)or f(i) = 2f(i — 1) — f(i — 2) + e(i), with Gaussian errors
e(i)~N (0, 7?), and diffuse priorgf(1) o const andf(2) o const for initial values. Both
specifications act as smoothness priors that penalise tmihfuinctionsf. A first order
random walk penalises abrupt jumps&) — f(i — 1) between successive states, and a
second order random walk penalises deviations from thadimend2 f (i — 1) — f(i —2).

For a fully Bayesian analysis, variance or smoothness pmt&rmjz are also consid-
ered as unknown and estimated simultaneously togethertétinknown functions. A
common choice are highly dispersed inverse gamma pyi@ré~1G(a, b), with very
smalla andb, e.g. 104. The Bayesian model specification is completed by the falgw
conditional independence assumptions:

i for given covariables and parametgiss andb, observationg; are conditionally

independent;

i priors p(f;|77), j = 1,...,n, p are conditionally independent;

iii priors for fixed and random effects, and hyperpriofsj =1,...,n, are mutually
independent.

An equivalent model to (2.6) for autoregressive smoothihgetative risks can be
specified in the Bayesian framework by the following model arior distributions:

yi~Poisson(p;)

log(u:) = log(pyr:) + B; + w;
u1~N(0,0.0000017)
Us|ur~N(0,0.0000017)

ko1~ N(2ug—1 — ug_2,7), k>2

.....
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where thgth age group anéith calendar year notation has been substituted by a single
indexing over the = jxk number of cells. Hereafter we shall refer to this model as to
the Bayesian AutoRegressive (BAR) model, and compare hédstandard’ one stated

in (2.3).

For computational reasons, Breslow and Clayton (1993) semmnstraints on their
random effects:; in order that their mean and linear trend are zero, and cotimse
constraints by introducing a linear tera{k (with & the calendar year), and allowing
unrestrained estimation of. Since we allow free movement of thés, we dispense with
the linear term, and impose a 'corner’ constraifit= 0. The graph is shown in Figure 1.

1
|
\ ,’I , Pid

pyr(i]

\

Figure 1. Graphical model for the Bayesian specification, using thectitd autoregressive
representation.

The model was implemented with WinBugs (Spiegelhalter,iiag, and Best, 1999),
according to the above specification. Goodness-of-fit wasszed through the Deviance
Information Criterion (DIC) (Spiegelhalter et al., 2002y both models.

3 Data

We analysed data from the Childhood Cancer Registry of PeedliCCRP). The CCRP is
the oldest and largest paediatric population-based C&egistry active in Italy. Data on
incident cases of cancer in children (aged less than 15 ya@available over a 35-year
period from 1967 to 2001. Clinical data on diagnosis andnneat are available together
with personal information. The criteria for inclusion ofses in the CCRP database have
been consistent and the quality of ascertainment has beisfastory over the period
covered by our investigation (Magnani et al., 2003). Cowfitsew cases of childhood
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cancer by sex, age class (0, 1-4, 5-9, 10-14 years) and ealgndr of diagnosis were
used to compute annual incidence rates (per million chilgrer year) referring to the
population resident in Piedmont in 1967-2001. We consitléne following diagnostic
categories: ALL (n = 688), AnLL (n = 145), CNS tumours (n = 758B (n = 254), all
cancers together (n = 3360). Analyses for ALL and AnLL wersiteéd to 1975-2001
in order to exclude the effect of improvement in diagnostetmods of the early 70’s
(Magnani et al., 2003).

4 Results

Table 1 presents goodness-of-fit statistics for the stahnéaisson and the BAR models,
for the cancer types considered in the analysis.

Figures 2-4 show observed and expected age-adjusted d¢anicknce ratess. cal-
endar year of diagnosis for all cancer types (Figure 2), QNSours and NB (Figure 3)
in 1967-2001, and ALL and AnLL in 1975-2001 (Figure 4). Ratspected by BAR

are compared to the ones expected by the standard GLM usedrioer trend analysis
(Poisson regression).

Table 1: Goodness-of-fit statistics for the standard Poisson anBARmodel.p}, is the
Bayesian measure of model dimensionality (Spiegelhattal.,e2002).

Poisson model BAR model
Cancer type DIC Ph DIC Ph
ALL 434 7 457 20
AnLL 317 6 331 13
CNS tumours 573 8 596 20
Neuroblastomal 418 6 442 19
All cancer types| 842 12 861 24

As expected, given its larger flexibility, BAR displays a m@omplex behaviour and
follows more closely the observed data than the Poisson indilaen all cancers are
pooled together, the BAR model shows an inflection in there¢wyears of the period
under observation (Figure 2), but there are no large difiggs in the fit achieved (Table
1). For cancers of the nervous system (both CNS tumours andllestoma), expecta-
tions do not differ greatly (Figure 3): the Poisson reg@ssind BAR models yield very
similar patterns with similar goodness-of-fit (Table 1).

For ALL, both the Poisson regression and BAR models agaedfitie data quite well,
with a slightly smaller error for the BAR model (sum of squhRearson residuals: Pois-
son: 1041, BAR: 822). The expectations do not differ gregttymost of the individual
years considered, but the overall shape of the models irdift (Figure 4). In particu-
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Figure 2: Childhood Cancer Registry of Piedmont. Observed (dots)eapécted age - adjusted
incidence rates (IRys. calendar year of diagnosis for children (0-14 years of ageall cancer
types in 1967-2001. Expectations by the Bayesian autassiyeemodel (BAR, thick straight
line) and the Poisson model (dashed line).

lar, the BAR expected rates do not exhibit a monotonicallyeasing pattern: in the first
half of the study period they oscillate around an averageevaf 35 case$)® years, then
show a sharp increase in the years from 1989 until 1997, aaliyfinegin to decline from
1998. Figure 4 also shows the corresponding analyses foL Alokver curves). For this
cancer type, the Poisson and BAR models produced similtgrpat

5 Discussion

In this study CCRP data on the incidence of ALL, and othercietechildhood cancer
sites, were analysed using a Bayesian approach, in ordessess the possibility of a
deviation from the monotonic increasing trend necessawijyected by standard regres-
sion methods, given their restrictive assumptions. BothRbisson and BAR models
showed increases in incidence for ALL. However, while therfer was bound to lead to
monotonically increasing rates, the latter's expectatisinowed broad oscillations. On
the other hand, the two approaches produced very similéerpatfor AnLL, nervous
system tumours and all cancer types.

In standard epidemiological practice, the choice betwésistical models is usually
carried out througla posteriori criteria, such as goodness-of-fit statistics and residual
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Figure 3: Childhood Cancer Registry of Piedmont. Observed (dots)eapécted age - adjusted
central nervous system tumour (CNS, upper curves) and biastoma (NB, lower curves)
incidence rates (IRys. calendar year of diagnosis for children (0-14 years of agépi67-2001.
Expectations by the Bayesian autoregressive model (BAE gtraight line) and the Poisson
model (dashed line).

analysis, and sometimes alagriori considerations about the plausibility of model as-
sumptions.

This paper shows an example of the typical pitfall resulfiogn relying onto a pos-
terior evaluation of the model fit without considering thedebassumptions in the first
place. In the above application, both the standard Poissdihe BAR model fit the same
data equally well (thus providing no useful statisticatemia for the choice of model) and
yet for ALL they lead to different interpretations of the pleaof the time trends. The Pois-
son model with fixed-effects only is not an appropriate togjive a faithful description
of the incidence data. Poisson regression fixes the ovéahesof the curve, resulting in
more weight to long-term trends, while BAR is more flexibleldence more responsive
to short-term changes. Besides being more correct for gkcation, the latter is a safer
methodology for descriptive trend analysis, and it miglstttise unsuspected behaviour
of the disease.

Flexible methods (i.e. compatible with non-linear behavjare thus capable of pro-
viding an "early warning” of changes in the direction of timeidence trend - high sen-
sitivity. On the other hand, a potential drawback of this amdilar methods is that their
estimates are very sensitive to short term fluctuationsnaadtherefore be more suscep-
tible to random variation - low specificity.

Bearing these considerations and limitations in mind, theifigs presented here are
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Figure 4: Childhood Cancer Registry of Piedmont. Observed (dots)apéected age-adjusted
acute lymphoblastic leukaemia (ALL, upper curves) andeooh lymphoblastic leukaemia
(AnLL, lower curves) incidence rates (IR$. calendar year of diagnosis for children (0-14 years
of age) in 1975-2001. Expectations by the Bayesian autessigre model (BAR, thick straight
line) and the Poisson model (dashed line).

of interest to epidemiologists since they are consistetit thie hypothesis of an infectious
aetiology for ALL (Kinlen, 1988; Greaves, 1988; Alexandérat, 1998), given that
infections commonly exhibit cyclical behaviour in time,dathe short latency time for
childhood cancer means that cancers with an infectiouslagyi may also be expected to
show cyclical time trends. CNS tumours and NB (Figure 3),AndL (Figure 4), which
are all considered to have a non-infectious aetiology, dehow similar oscillations.

Since we do not believe that cancer rates may change at aaobmate over a long
period of time, we deem it more appropriate and meaningfahracterise the trend with
a nonparametric smoother, which also allows us to deteentehanges in trend.
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