
Proceedings of the Seventh Young Statisticians Meeting
Andrej Mrvar (Editor)
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Analysis of the Maximum-Likelihood

Estimation of Hidden Markov Models

Gabor Molnár-Sáska1

Abstract

The estimation of Hidden Markov Models has attracted a lot of attention
recently, see results of Legland and Mevel (2000) and Leroux (1992). The
purpose of this paper is to give a view for the analysis of the maximum-
likelihood estimation of HMM-s. General consistency results are compared
to the new approach. The new approach is potentially useful for deriving
strong approximation results, which are in turn applicable to analyze adaptive
predictors.

1 Introduction

Hidden Markov Models have become a basic tool for modeling stochastic systems
with a wide range of applicability in such diverse areas as robotics, telecommu-
nication, econometrics and protein research. For a general introduction see van
Schuppen.

The estimation of the dynamic of a Hidden Markov Model is a basic problem
in applications. A key element in statistical analysis of HMM-s is a strong law of
large numbers for the log-likelihood function. In previous works stability theory of
Markov chains and the subadditive ergodic theorem were used, see Baum and Petrie
(1966), Douc and Matias (2001), Legland and Mevel (2000) and Leroux (1992).
Although these tools are very powerful, they do not yield a LLN with guaranteed
rate of convergence. An alternative tool that has been widely used in linear system
identification is theory of L-mixing processes, see Gerencsér (1989). The advantage
of this approach is that, potentially a more precise characterization of the estimation
error-process can be obtained, which, in turn, is crucial for the analysis of the
performance of adaptive prediction.

2 Hidden Markov Models

We consider Hidden Markov Models with a general state space X and an observation
or read-out space Y. Both are assumed to be Polish spaces, i. e. they are complete,
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separable metric spaces.

Definition 2.1 The pair (Xn, Yn) is a Hidden Markov process if (Xn) is a homoge-
nous Markov chain, with state space X and the observations (Yn) are conditionally
independent given (Xn) and identically distributed.

If X and Y are discrete then we have

P (Yn = yn, . . . Y0 = yo|Xn = xn, . . .X0 = x0) =
n∏

i=0

P (Yi = yi|Xi = xi).

In this case we will use the following notations

P (Yk = yk|Xk = xk) = P (yk|xk),

P (Y = y|X = x) = bx(y) B(y) = diag(bx(y)).

It is well-known, see Gerencsér et al. (2002), that if (Xn, Yn) is a Hidden Markov
process, then Zn = (Xn, Yn) is a Markov process.

For further notation let Q > 0 be the transition matrix of the unobserved Markov
process (Xn), where Qij = P (Xn+1 = j|Xn = i), and let the predictive filter be
defined by

p
j
n+1 = P (Xn+1 = j|Yn, . . . Y0).

Also write pn+1 = (p1
n+1, . . . , p

N
n+1)

T . The filter process satisfies the Baum-equation,

pn+1 = π(Q∗B(Yn)pn). (2.1)

where π is the normalizing operator π(x)i = xi
∑

j xj xj ≥ 0, x 6= 0 to make pn+1

a probability vector and ∗ denotes the transpose operator. Here p
j
0 = P (X0 = j).

In practice we take an arbitrary probability vector q as initial condition. Then
the solution of the Baum-equation will be denoted by pn(q). A key property of the
Baum-equation is its exponential stability with respect to the initial condition. This
is the content of the following theorem.

Theorem 2.1 (Legland, Mevel) Let Q > 0 and let q and q ′ are different initial
points. Then

‖pn(q) − pn(q,)‖TV ≤ C(1 − δ)n,

where C is a finite constant, 0 < δ < 1 and ‖ ‖TV denotes the norm in total
variation.

This basic property of the prediction filter is abstracted and used to derive general
mixing properties of the extended process (Xn, Yn, pn), see Legland and Mevel (2000)
and Gerencsér et al. (2002).
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3 Estimation of Hidden Markov Models

This section gives a brief outline of the maximum likelihood estimation of Hidden
Markov Models. Let the state space X be finite and let the transition matrix Q be
positive. Furthermore let the read-outs be continuous, i.e. Yn ∈ Y, where Y is a
Euclidean space. Let the Doeblin condition be satisfied for Xn and thus for the pair
(Xn, Yn). With the notation pi

n = P (Xn = i|Yn−1, . . . , Y0) we have

pn+1 = π(QT B(Yn)pn) = f(Yn, pn).

Denote f(y|j) the density function of Yn given Xn = j. Assume

E| log f(y|j)| < ∞ (3.1)

for all j. Yns are conditionally independent, so the common density function of
(Y1, . . . , Yn) exists. Denote it by p(yn, . . . , y1, Θ), where Θ is the parameter of the
system.

Theorem 3.1 The limit

lim
n→∞

1

n
E(− log p(Y1, . . . , Yn))

exists.

If the read-out space Y is finite and Θ = Θ∗ is the real parameter then the
consistency of the ML is implied from the following general theorem.

Theorem 3.2 (Shannon-McMillan-Breiman) Let Yn be (strictly) stacionary, er-
godic process. Then

lim
n→∞

−
1

n
log p(Y1, . . . , Yn) = lim

n→∞

E(− log p(Y1, . . . , Yn))

exists with probability 1.

In case of the structure of Hidden Markov

Theorem 3.3 If E| log f(y|j)| < ∞ for all j, then

lim
n→∞

1

n
(− log p(Y1, . . . , Yn)) = lim

n→∞

E(− log p(Y1, . . . , Yn))

exists with probability 1.

In our approach we replace compactness with the Doeblin condition and use the
concept of L-mixing. We achieve similar results as above.

For the likelihood estimation we need

log p(yn−1, . . . y0, θ) =

n−1∑

k=1

log p(yk|yk−1, . . . y0, θ) + log p(y0, θ),
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and
log P (yk|yk−1, . . . y0, θ) =

∑

x

log bx(yk)P (x|yk−1, . . . , y0, θ) =

∑

x

log bx(yk)p
x
k.

Write
g(y, p) =

∑

x

log bx(y)px. (3.2)

Thus we get

log p(yn, . . . , y0, Θ) =
1

N

N∑

k=1

g(yk, pk) (3.3)

In Gerencsér et al. (2002) the L-mixing property of the process g(Yn, pn) is proved
under similar technical conditions as in Legland Mevel (2000), where the geometric
ergodicity is proved for the same process. Both implies the existence of the limit in
(3.3).

Now L-mixing processes play a prominent role in modern theory of linear stochas-
tic systems, and thus the latter result is directly applicable to derive a simple proof
of the result of Baum and Petrie (1966). But it also provides the basic technical
conditions, under which a very detailed characterization of the estimator process
can be given in analogy with Gerencsér (1990).

In particular we have that for finite state-finite read-out HMM-s, parametrized
by θ, the ML estimate of the true parameter θ∗, denoted by θ̂N satisfies, under
simple technical conditions,

θ̂N − θ∗ =

(R∗)−1
1

N

N∑

n=1

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ

∗) + rn,

where rn = OM(N−1) and R∗ is the Fisher-information matrix.
A key point here is that the error term is OM(N−1). This ensures that all basic

limit theorems, that are known for the dominant term, which is a martingale, are
also valid for θ̂N − θ∗.

The finer characterization of the estimator process is not of purely academic
interest: it plays a key role in adaptive prediction and model selection, see e.g.,
Gerencsér (1994).
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