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Latent Class Analysis Identification of 
Syndromes in Alzheimer's Disease: A Bayesian 

Approach 

Cathal D. Walsh1 

Abstract 

Latent variable models have been used extensively in the social 
sciences.  In this work a latent class analysis is used to identify syndromes 
within Alzheimer's disease. The fitting of the model is done in a Bayesian 
framework, and this is examined in detail here. In particular, the label 
switching problem is identified, and solutions presented. Graphical 
summaries of the posterior distribution are included. 

1 Introduction 

Latent Class Analysis (LCA) is the use of a discrete latent variable to model a 
situation where there are a number of categorical response variables of interest. 
These models have been used extensively in the social sciences to model 
heterogeneity of manifest responses in a multivariate sense. Many examples and 
guidance on practical fitting strategies may be found in Hagenaars and 
McCutcheon (2002). Examples of the use of LCA in the context of medical 
diagnosis date back to Young (1983). The methods used in this paper draw on 
Bayesian strategies for fitting these models, an overview of which can be found in 
Garrett and Zeger (2000). 

2 Model 

The model for LCA can be described in terms of manifest variables  x, and latent 
categorical variable z. In this case, interest is on manifest variables which consist 
of a number of binary indicators for each individual, being presence or absence of 
a particular disease symptom.  Let xj be the response vector of individual j  taken 
from a sample of J individuals. Then xij  is the presence or absence of symptom 
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1,...,i I∈ . Let  πik be the probability of a positive response on variable i  for a 

person in class z_j=k 1,...,k K∈  and ηk be the probability that a randomly chosen 

individual is in class k.  The conditional distribution of each xij  is Bernouilli:   
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Given the class zj=k and the j th individual, independence yields: 
 
 
 
 
With K classes, the mixture becomes, 

 
 
 
 

The posterior probability that an individual with response xj belongs to class k is; 
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Thus, conditioning on the unobservable class, yields a straightforward finite 
mixture of Bernoulli random variables. This class variable is unknown and some 
effort is spent on the identification of that for each individual.  

3 Fitting 

Fitting the latent class model involves standard techniques used to deal with 
missing labels. Thus, for example, in the likelihood framework the EM algorithm 
Dempster et al. (1977) is used. 

In a Bayesian context, the missing labels are treated as parameters to be jointly 
estimated, and samples from the corresponding posterior can be obtained using 
MCMC. 

3.1 EM algorithm 

In the maximum likelihood setting the label information is treated as unknown, 
and this is completed before the parameters are estimated. Since this completion 
step is carried out with uncertain estimates of the parameters, it is repeated with 
the new estimates in an iterative fashion. 
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This is the most common method of fitting these models, and care must be 
taken to ensure that local maxima are not reached. This is done by using multiple 
restarts from different initial conditions. 

The algorithm used to obtain point estimates of the parameters then proceeds 
as; 

 
1. Choose an initial set of posterior probabilities ( | )j jh z k= x  

2. Obtain a first approximation to kη
∧

and ikπ
∧

 

3. Substitute these estimates into the expression for ( | )j jh z k= x to get 

improved estimates 

4. Return to stage 2 to get new approximations for kη
∧

 and ikπ
∧

 

 
This algorithm proceeds quickly, and there is virtually no computational 

overhead involved. In order to examine standard errors and goodness of fit 
statistics great care must be taken in the context of sparse data. Since the number 
of possible response patterns is large, 2I, sparseness is a concern even where data 
on many hundreds have been obtained. Solutions to these problems include using 
bootstrap samples or lower order marginals for goodness of fit.  

3.2 Bayesian 

An alternative method of fitting these models is to use a fully Bayesian 
specification. This requires the model for the data, together with priors for the 
relevant parameters.  

The model is as has been specified in Section 2. The priors can be obtained 
from specialists within the area of application. Alternatively, sensibly vague priors 
can be placed on the parameters. For example, a Dirichlet prior with equal weights 
on η  would be considered to be ‘flat’ in the sense one would expect.  

When fitting the model using MCMC a sequence of realisations of the 
parameters is available at each step, and derived summaries may usefully be 
presented in examination of model fit and interpretability. An outline of some 
diagnostics which can be of practical use is given in Garrett and Zeger (2000).  

One of the referees emphasised that analogous methods can be used to explore 
the likelihood without using a fully Bayesian model. In an MLE framework, 
similar summaries may be constructed. The emphasis here, however, is how the 
Bayesian fitting proceeds.  
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4 Application to Alzheimer's disease 

Alzheimer's disease is a degenerative condition which is affecting increasing 
numbers in a greying society. Largely due to improvements in health care and 
population based interventions, we have seen improving outcomes for those 
suffering from cardiac conditions and cancers. In contrast, however, no definitive 
cure exists for Alzheimer's Disease.  

Research into this disease is highly multi-disciplinary involving psychiatrists, 
neuropsychologists, data managers, clinical psychologists and statisticians. The 
type of data that arise are complex and as identified by Kryscio and Schmitt 
(2000), more statisticians are needed in this area.  

Of particular interest for this work, the clinical side of which is discussed in 
more detail in Moran et al. (2004), is the relationship between Behavioural and 
Psychiatric Symptoms of Dementia (BPSD) and the disease itself.  

The working research hypothesis is that subclasses, or syndromes of the 
disease may exist. Further, it is supposed that these are the clinical phenotypes of 
the disease which may be related to genetic factors specific to the individual. 

By identifying clinical phenotypes, genetic testing of individuals may be 
sampled in an efficient fashion - ensuring that the different syndromes are 
represented by the sample of individuals chosen. To this end, the probability of 
class membership will be a useful inferential summary. 

4.1 Data description 

The data in this case come from a memory clinic in St James's Hospital, Dublin. 
The Mercer's Institute houses the national memory clinic for Ireland and is the 
primary centre involved in the differential diagnosis of Alzheimer's disease. The 
sample of individuals to be examined was restricted to first visit patients with mild 
disease. This restriction was to ensure clinical homogeneity of the sample. 

An examination of cases dealt with by the clinic revealed 240 first visits for 
individuals who were diagnosed as having probable disease according to the 
NINCDS-ADRDA criteria McKhann et al. (1984), and a Clinical Dementia Rating 
(CDR) Berg (1988) of 0.5 or 1.0. 

This restriction to mild disease was made in order to ensure that the symptoms 
were related to syndrome rather than severity. This strategy ensured that a known 
source of heterogeneity was eliminated before the analysis began. 

The Behave-AD Reisberg et al. (1996) instrument had been administered to the 
primary caregiver and this produces information on the prevalence of each 
symptom. 

The Behave-AD produces scores on an ordinal scale for each of the symptoms. 
However, since this sample consisted of individuals in the mild stages of disease 
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the symptoms were each recorded as a binary variable. The symptoms of interest in 
this analysis were Hallucinations, Activity Disturbance, Aggression, Agitation, 
Diurnal Rhythm Disturbance and Affective disorder. 

4.2 Data 

Since the pattern of symptoms can be described by binary variables, it is 
convenient to write the combinations in the form {0,1}6, so for example an 
individual exhibiting all symptoms would be denoted 111111, whereas an 
individual exhibiting none would be denoted 000000. 

Thus, Table 1 summarises the data on all cases included. 
 

Table 1: Data on prevalence of each symptom pattern. 

Pattern   n   Pattern   n   Pattern   n  
111111   3   011101   14   001101   2 
111011   1   011011   2   001011   1 
111001   1   011010   3   001010   1 
110101   1   011001   9   001001   4 
110011   2   011000   1   001000   2 
110001   5   010111   11   000111   3 
110000   2   010101   24   000110   1 
101001   1   010100   3   000101   9 
100101   1   010011   11   000100   3 
100001   1   010010   2   000011   6 
100000   1   010001   35   000010   1 
011111   6   010000   20   000001   25 
011110   1   001111   3   000000   18 

5 Analysis 

The model was fit in the maximum likelihood framework using LATCLASS  
Bartholomew and Knott (1999) and in the Bayesian framework using WinBUGS 
1.4. Additional processing was carried out using R 1.8. R Dev Core Team (2005). 
All these packages ran on a 3.2GHz Pentium 4 PC under Windows XP. 

5.1 Label switching 

A key issue which arises when sampling from the joint posterior distribution is 
that the label that is sampled for each individual is assigned at each step of the 
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sampler. Since the label is a latent marker, the assignment of the particular label is 
unique only up to the permutation group. An example makes this clear. 

A simulation study highlights what occurs. For this simulation, two latent 
groups were defined. The prevalence vector was set at η =[0.2,0.8] and the 

symptoms within group 1 were given with prevalence π11 =0.1, π21=0.6 and in 
group 2 with prevalence π12=0.9, π22=0.3. The total number of individuals was set 
at 1000. 

 
 

Figure 1: Chain for simulated data showing chains exploring different label space. 

As is good practice, 5 chains were set running from different starting values. 
The output of the chain for η  is shown in Figure 1. The between chain variability 

is influenced by the distance of two of the chains from the lower three. This is a 
cause for a concern when considering whether the chains have converged in 
distribution. 

Of course, the issue here is that two of the chains have labelled individuals in 
one fashion whereas the other three have labeled in the other direction. By 
rearranging the columns of the sampled matrix, this is made clear. In particular, η 1 

and η 2 have been switched for the top two chains and the resulting output is 

shown in Figure 2. 
The arbitrary nature of the labels for latent mixtures and the difficulties caused 

for Bayesian inference is well known, and is discussed, for example, in Richardson 
and Green (1997). However, there are a number of strategies to deal with this 
problem some of which are discussed here. 
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Figure 2: Transformed chains showing impact of label change. 

The solution proposed in Richardson and Green (1997) is to place a constraint 
on the parameter space. This could be in η space, in π space or some combination 

of them. For illustration, the behaviour of the sampler in π  space is shown in 
Figure 3. It is clear from this that the chains are exploring parts of the joint space 
which is divided by the line of symmetry. An arbitrary ordering of the parameters, 
either through the prior or post-hoc will break this symmetry and force 
identifiability. 

It is noted here that the fact that the chains do not explore the whole space (in 
the case of the simulated data) means that they can not have (technically) 
converged. Indeed, this fact is described for mixture models in Celeux et al. (2000) 
where the authors suggest that “almost the entirety of samplers used for mixture 
models has not converged.” 

Of course, in order for the results to be usable, what is required is samples 
from the posterior, modulo the permutation group. One strategy is the truncation 
along symmetries as suggested by placing constraints on the parameters. An 
alternative is to ‘gather’ posterior samples together as described by Stephens 
(2000). Here the author suggests that a loss function can be used to ‘suck’ the 
samples in the joint posterior together. Using the ideas presented, an appropriate 
loss function for this model is represented by a product of Dirichlet and Betas. 
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Figure 3: Transformed chains for π  showing impact of label change. 

Thus the algorithm for this situation is; 

1. Calculated loss is based on  log( )− ⋅  of 
,

, 1

Di( | ) Be( | )
I K

ik ik
i k

η α π θ
=

∏ . 

2. Estimate α and θ from the initial set of samples. 
3. Run through sampled values permuting labels to minimize the loss. 
4. If changes of labels have occurred return to the start. 

 
Offline, this algorithm has taken minutes with up to 4 classes, but of the order 

of an hour for 5 and many hours for 6 classes for 10,000 samples. The expense 
comes from the fact that the permutation group grows very quickly. 

In practice, the algorithm will not change the results compared to the simple 
constraints for the situation given in our simulated example. This is largely due to 
the fact that there is a large amount of information in the data in this case. Thus 
the joint posterior is well defined and label switching within chains is unlikely. 

However, for the case of the Alzheimer's data as recorded, a difference is 
observable. Due to the smaller amount of data, the information in the likelihood is 
less, and thus the joint posterior is flatter. This permits the sampler to commute 
across permutations of labels within a single chain. Indeed, a similar problem 
would occur with more information if the modes were closer - a feature of larger 
number of classes. 

The Figure 4 shows the case of the sampler for η for the 3 class model. 

 



Latent Class Analysis Identification of Syndromes… 155 

 

 

 
Figure 4: Chain for η  showing switching. 

5.2 Parameter constraints solution 

Initially, constraints are placed on the η ; η 1<η 2<η 3 and the chains are post-

processed with this constraint. The result of this is to (somewhat artificially) 
separate out the chains. The picture in Figure 5 makes this fact clear. 

 
Figure 5: Chain for η  showing constrained solution. 
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While the imposition of this constraint may seem sensible (there has to be a 
smallest class,) it is unreasonable to suggest that this will work in distribution.  
The impact is to truncate the joint posterior, which may have a strange effect on 
the marginal distributions. 

An alternative is to use the loss function approach to group samples for 
parameters 

5.3  Loss function processing 

The strategy of post processing using the loss function described was 
implemented. This was a substantial computational overhead when compared with 
the constraint solution. 

However, the advantage of the strategy is that the function jointly considers all 
parameters, and does not abruptly truncate any part of the joint distribution. The 
output is shown in Figure 6. 

 
Figure 6: Chain for η showing loss switched solution. 

6 Results 

The results of the analysis are shown in the form of point estimates and standard 
errors. The maximum likelihood solution for the 3 class model is shown for 
comparison purposes. In the case of the Bayesian analysis, graphical summaries of 
the marginal posteriors are provided. Where standard errors are given in tabular 
format for the Bayesian summaries, these are the standard deviation of the sampled 
values of the parameters. 
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Table 2: Summaries for 3 class model. EM algorithm. 

  class 0   class 1   class 2  
Hallucination 0.09 (0.03)  0.01 (0.02)  0.77 (0.24) 
Activity 0.57 (0.05)  0.79 (0.07)  0.98 (0.05) 
Aggression 0.13 (0.04)  0.37 (0.08)  0.98 (0.06) 
Agitation 0.11 (0.06) 0.82 (0.16)  0.73 (0.21) 
Diurnal 0.16 (0.04)  0.33 (0.08)  0.97 (0.08) 
Affective 0.63 (0.07) 0.96 (0.05)  0.99 (0.05)  
    

η   
 

0.58 (0.10) 0.39 (0.10) 0.03 (0.02) 

 
It is noticeable in the summaries that the standard errors, particularly in the 

case of the small class, are smaller than one might expect in Table 2. This is for 
reasons already discussed. On the other hand, the Bayesian estimates in Table 3 
give more realistic values. 

In addition, graphical summaries, such as Figure 7 for η  and Figure 8 for the 

π . These are easy to present to clinicians and they can get a feeling for the 
substantial uncertainty that exists about the estimates of the parameters in the 
small classes. 
 

Table 3: Summaries for 3 class model. Bayesian Analysis. 

   class 0   class 1   class 2  
Hallucination  0.07 (0.03)  0.08 (0.04)  0.22 (0.24)  
Activity  0.53 (0.06)  0.79 (0.07)  0.70 (0.26)  
Aggression  0.09 (0.05)  0.36 (0.08)  0.55 (0.33)  
Agitation  0.13 (0.06)  0.62 (0.11)  0.41 (0.30)  
Diurnal  0.11 (0.05)  0.36 (0.07)  0.55 (0.30)  
Affective  0.58 (0.08)  0.95 (0.04)  0.70 (0.28)  
    
η  0.50 (0.06) 0.43 (0.05) 0.05 (0.05) 
 

In addition to the summary of results presented here, other graphical tools 
outlined in Garrett (2000) have been used. In deciding on the number of classes, a 
posterior predictive frequency check, Figure 9, was used. This compares the 
observed number of individuals in a class with the posterior predicted number in 
each class. The observed number is marked as a digit on a plot, with the posterior 
median and interquartile range shown by solid and dotted lines respectively.  
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Figure 7: Marginal posterior estimates for η . 

 
 

Figure 8: Marginal posterior estimates for π . 
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Figure 9: PFC for increasing numbers of classes. Annotations show the pattern of 
symptoms and number of individuals in that group. 

 
Figure 10: Probability of class membership. 

 
In addition we summarise the probability of class membership given a 

particular pattern of the manifest symptoms. This is readily obtained from the 
posterior samples. 

Models with different numbers of classes have been fitted and the resulting 
posterior probability of membership has been calculated in each case. These are 
presented in stacked fashion for different number of classes. The pattern of 
symptoms is shown along the x-axis ordered by the number of individuals in each 
class. Thus the estimated model is most heavily estimated by patterns to the left. 
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The bars show the probability of membership of each class, and the height of 
each bar thus adds to one (so no scale on the left hand side is required.) 

This graphical summary is shown in Figure 10. 

7 Discussion 

From a clinical perspective, the latent groupings include a low symptom 
prevalence group, a higher symptom prevalence group and a group that includes 
those exhibiting hallucinations. The evidence in favour of the 3 class model is that 
there is a slightly better fit between observed and predicted. A 2 class model is not 
clinically interesting, because it shows only a high and low symptom group. The 
movement beyond 3 classes is not justified by an improvement in fit.  

This work consists of a deeper examination of the methodology we used during 
the exploratory phase of Moran et al. (2004). The Bayesian analysis comes at a 
substantial computational cost and is hard to justify in this instance. Indeed, this 
was a point made by the referees in this case. However, the work emphasizes a 
number of important general lessons. 

The joint posterior for sparse tables is moderately flat over large regions. In 
this situation, asymptotic results have to be used with great care. This is 
highlighted by for example Formann (2003). 

When fitting a Bayesian mixture model, the problem of label switching can 
occur. Indeed, from a technical perspective if it does not occur then the samplers 
have not explored the full posterior. This is a point highlighted by Celeux et al. 
(2000) among others. 

Resolving the difficulties caused by switching within chains can be done by 
imposing ordering constraints on the parameters. One way of thinking of these 
constraints is as the imposition of a prior structure on a model. This strategy is a 
popular one and has been implemented for mixtures by for example Richardson 
and Green (1997). This method essentially breaks the symmetry of the joint 
posterior distributions, but may result in artificial summaries for situations where 
a substantial posterior mass lies on the line of symmetry. 

An alternative method of removing the impact of switching is to specify a loss 
function which ensures that the summaries are ‘well behaved’ (as defined by the 
loss.) This idea follows the logic of Stephens (2000) who examines mixtures of 
Normals. One such loss function was implemented here. 

As a method of solving the switching problem, the loss function approach is 
expensive, but we posit is more realistic in high dimensional spaces than 
constraints unless the latter are chosen with great care. 

One of the referees pointed out that there may be instances where the 
additional overhead may be worthwhile. For example, if there are known 
constraints on the parameters, or where there is substantial prior information, a 
Bayesian method of fitting may be considered. 
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8 Conclusions 

The fitting of latent mixture models is now commonplace, as may be seen in work 
such as Hagenaars and McCutcheon (2002). The availability of software tools to 
do the necessary calculations means that it is quite quick and easy to fit such 
models. Routine diagnostics are produced and a particular model may be chosen.  

This work demonstrates how these models are fitted within a Bayesian 
paradigm, the problems that may be encountered, and gives explicit guidance on 
their solution. 
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