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A-Optimal Chemical Balance Weighing Design
under Certain Condition

Bronisław Ceranka and Małgorzata Graczyk1

Abstract

The paper is studying the estimation problem of individual weights of p objects
using the design matrix X of the A-optimal chemical balance weighing design under
the restriction p1 + p2 = q ≤ p, where p1 and p2 represent the number of objects
placed on the left pan and on the right pan, respectively, in each of the measurement
operations. The lower bound of tr(X

′
X)−1 is attained and the necessary and suffi-

cient conditions for this lower bound to be obtained are given. There are given new
construction methods of the A-optimal chemical balance weighing designs based on
incidence matrices of the balanced bipartite weighing designs and the ternary balan-
ced block designs.

1 Introduction

Suppose specifically that there are p objects of true unknown weights w1, w2, ..., wp,
respectively, and we wish to estimate them employing n measuring operations using a
chemical balance. Let y1, y2, ..., yn denote the recorded observations in these n opera-
tions, respectively. It is assumed that the observations follow the standard linear model

y = Xw + e, E(e) = 0n, E(ee
′
) = σ2In, (1.1)

where X is of order n × p and is called the weighing design matrix. The elements of X
are xij, i = 1, 2, .., n, j = 1, 2, ..., p, and a typical element xij is −1 if the jth object
is placed on the left pan during the ith weighing operation, +1 if the jth object is placed
on the right pan during the ith weighing operation and 0 if the jth object is not utilized
in either pan during the ith weighing operation. Hence w = (w1, w2, .., wp)

′ is the vector
of true unknown weights (of parameters). The vector e is the so-called vector of error
components satisfying the usual homoscedasticy conditions.
The inference problem centres around estimation of true individual weights of all objects.
The optimality problem is concerned with efficient estimation in some sense by a proper
choice of the design matrix X among designs at our disposal. The model (1.1) is the
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standard Gauss - Markov model and the following results are well known. The parameter
vector w is estimable if and only if r(X) = p in which case

ŵ = (X
′
X)−1X

′
y, V(ŵ) = σ2(X

′
X)−1, (1.2)

where ŵ is the blue and V is the dispersion matrix.
In the literature some optimality criterions, i.e. A-, D-, E-optimality, are considered.
Some construction methods of optimal designs are known. They are formulated for de-
sign matrices with elements equal to −1 and 1, only and they are based on incidence
matrices of block designs.
Some problems connected with the optimality of chemical balance weighing designs were
considered in the books of Raghavarao (1971), Banerjee (1975), Shah and Sinha (1989).
Among all possible designs an A-optimal design are considered. There are designs in
which the sum of variances of esimators, or equivalently tr (V(ŵ)) = σ2tr(X

′
X)−1, is

minimal. Wong and Masaro (1984) gave the lower bound for tr(X
′
X)−1 and some con-

struction methods of the A-optimal chemical balance weighing designs.
In the paper we consider A-optimal criterion for designs for which in each measurement
operation not all objects are included. In other words, in each column of the design
matrix exist elements equal to −1, 1 and 0.
In the next section we give a lower bound for tr(X

′
X)−1 and the necessary and sufficient

conditions to this lower bound to be attained under given restriction on the number of
objects included in the particular measurement operation. We present new construction
method of the A-optimal design based on balanced bipartite weighing designs and ternary
balanced block designs.

2 Some results on A-optimality
Let X be an n× p design matrix of a chemical balance weighing design. The following
results from the paper Wong and Masaro (1984) give the lower bound for tr(X

′
X)−1

Lemma 1 For an n× p design matrix X of rank p we have the inequality

tr
[
(X

′
X)−1

]
≥ p2

tr(X′X)
,

the equality being attained if and only if X
′
X is equal to the p × p identity matrix

Ip multiplied by scalar, i.e. X
′
X = zIp.

The lower bound of tr
[
(X

′
X)−1

]
is attained if and only if the elements of the design ma-

trix X are equal to−1 or 1, only. It implies that in each measurement operation all objects
must be included in different combinations. Some times it is not possible. Therefore in
the present paper we consider the situation the elements of the design matrix X are equal
to 0, either. It other words, in each weighing not all objects are included. Thus we give
new lower bound of tr

[
(X

′
X)−1

]
. We have
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Theorem 1 For any nonsingular chemical balance weighing design with the design ma-
trix X = (xij) we have

tr(X
′
X)−1 ≥ p2

q · n
, (2.1)

where q = max(q1, q2, ..., qn), qi =
∑p

j=1 x2
ij, i = 1, 2, .., n.

Proof. Because the design matrix X is of full column rank we have

tr(X
′
X) =

n∑
i=1

p∑
j=1

x2
ij =

n∑
i=1

qi ≤ q · n. (2.2)

Thus, from Lemma 1 we get (2.2). Hence the result.

In the case q = p we get the inequality given in Wong and Masaro (1984).

Definition 1 Any nonsingular chemical balance weighing design with the design matrix
X = (xij) is said to be A-optimal if

tr(X
′
X)−1 =

p2

q · n
.

Theorem 2 Any nonsingular chemical balance weighing design with the design matrix
X = (xij) is A-optimal if and only if

X
′
X =

q · n
p

Ip.

Proof. To prove the necessity part we observe that from Lemma 1 we have X
′
X = zIp

and the equality in (2.1) is satisfied if and only if tr(X
′
X) = q ·n. It implies that z = q·n

p
.

The sufficiency part is obvious.

In the present paper we will construct an A-optimal chemical balance weighing design
under the restriction p1 + p2 = q ≤ p, where p1 and p2 represent the number of objects
placed on the left and on the right pan, respectively, in each of the measurement opera-
tions. They are based on the incidence matrices of the balanced bipartite weighing designs
and the ternary balanced block designs.

3 Balanced designs
In this section we recall the definitions of the balanced bipartite weighing design given in
Huang (1976) and of the ternary balanced block design given in Billington (1984).
A balanced bipartite weighing design is a design which describes how to replace v treat-
ments in b blocks such that each block containing k distinct treatments is divided into
2 subblocks containing k1 and k2 treatments, respectively, where k = k1 + k2. Each



4 Bronisław Ceranka and Małgorzata Graczyk

treatment appears in r blocks. Every pair of the treatments from different subblocks ap-
pears together in λ1 blocks and every pair of treatments from the same subblock appears
together in λ2 blocks. The integers v, b, r, k1, k2, λ1, λ2 are all parameters of the bal-
anced bipartite weighing design. The parameters are not independent. They are related
by the following identities

vr = bk,
b = λ1v(v−1)

2k1k2
,

λ2 = λ1[k1(k1−1)+k2(k2−1)]
2k1k2

r = λ1k(v−1)
2k1k2

.
Let N∗ be the incidence matrix of such a design with elements equal to 0 or 1, then

N∗N∗′
= (r − λ1 − λ2) Iv + (λ1 + λ2)1v1

′
v.

A ternary balanced block design is defined as the design consisting of b blocks, each of
size k, chosen from a set of objects of size v, in such a way that each of the v treatments
occurs r times altogether and 0, 1 or 2 times in each block, (2 appears at least ones). Each
of the distinct pairs appears λ times. Any ternary balanced block design is regular, that is,
each treatment occurs alone in ρ1 blocks and is repeated two times in ρ2 blocks, where ρ1

and ρ2 are constant for the design. Let N be the incidence matrix of the ternary balanced
block design. It is straightforward to verify that

vr = bk,
r = ρ1 + 2ρ2,
λ(v − 1) = ρ1(k − 1) + 2ρ2(k − 2) = r(k − 1)− 2ρ2,
NN′ = (ρ1 + 4ρ2 − λ)Iv + λ1v1

′
v = (r + 2ρ2 − λ)Iv + λ1v1

′
v.

4 Construction of the design matrix
Let N∗ be the incidence matrix of the balanced bipartite weighing design with the param-
eters v, b, r, k1, k2, λ1, λ2. From the matrix N∗ we form the matrix N by replacing k1

elements equal to +1 of each column which correspond to the elements belonging to the
first subblock by −1. Thus each column of the matrix N will contain k1 elements equal
to −1 and k2 elements equal to +1. From the matrix N we construct the design matrix X
of the chemical balance weighing design in the form X = N

′
. In this design p = v and

n = b. The following result is from Ceranka and Graczyk (2002)

Lemma 2 Any chemical balance weighing design with the design matrix X = N
′
is non-

singular if and only if k1 6= k2.

Theorem 3 Any nonsingular chemical balance weighing design with the design matrix
X = N

′
is A-optimal if and only if

λ2 = λ1 (4.1)

and

q = k. (4.2)
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Proof. For the design matrix X = N
′ we have

X
′
X = (r − λ2 + λ1)Iv + (λ2 − λ1)1v1

′
v

and
X

′
X = q·b

v
Iv.

Comparing these two equalities we get λ2 = λ1 and r−λ2 + λ1 = q·b
v

. If (4.1) is satisfied
then we get (4.2) from the last equation. Hence we get the thesis of the Theorem.

Now, we consider the chemical balance weighing design with the design matrix X =
N

′ − 1b1
′
v, where N is the incidence matrix of the ternary balanced block design with

the parameters v, b, r, k, λ, ρ1, ρ2. In this design p = v and n = b. From Ceranka,
Katulska and Mizera (1998) we have

Lemma 3 Any chemical balance weighing design with the design matrix X = N
′−1b1

′
v

is nonsingular if and only if v 6= k.

Thus we get

Theorem 4 Any nonsingular chemical balance weighing design with the design matrix
X = N

′ − 1b1
′
v is A-optimal if and only if

b + λ− 2r = 0 (4.3)

and

b− ρ1 =
q · b
v

. (4.4)

Proof. For the design matrix X = N
′ − 1b1

′
v we have

X
′
X = (r + 2ρ2 − λ)Iv + (b + λ− 2r)1v1

′
v

and
X

′
X = q·b

v
Iv.

Comparing these two equalities we get b + λ− 2r = 0 and r + 2ρ2 − λ = q·b
v

. If (4.3) is
satisfied we get (4.4) from the last equation. Hence the claim of the Theorem.

5 Balanced bipartite weighing designs leading to the
A-optimal designs

We have seen in the Theorem 3 that if the parameters of the balanced bipartite weighing
design satisfy the condition (4.1) then the chemical balance weighing design with the de-
sign matrix X = N

′ is A-optimal. Under this condition we have the following Theorem
given in Ceranka and Graczyk (2005)
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Theorem 5 The existence of the balanced bipartite weighing design with the parameters
v, b = 2sv(v−1)

c2(c2−1)
, r = 2s(v−1)

c2−1
, k1 = c(c−1)

2
, k2 = c(c+1)

2
, λ1 = s, λ2 = s, c =

2, 3, ..., s = 1, 2, ... implies the existence of the A-optimal chemical balance weighing
design, v ≥ c2, q = c2.

6 Ternary balanced block designs leading to the
A-optimal designs

We have seen in the Theorem 4 that if the parameters of the ternary balanced block design
satisfy the condition (4.3) then a chemical balance weighing design with the design ma-
trix X = N

′ − 1b1
′
v is A-optimal. Under this condition we have the following Theorem

Theorem 6 The existence of the ternary balanced block design with the parameters

(i) v = s, b = us, r = u(s − 2), k = s − 2, λ = u(s − 4), ρ1 = u(s − 4), ρ2 =
u, u = 1, 2, ..., s = 5, 6, ..., except the case u = 1 and s = 5,

(ii) v = s, b = us, r = u(s − 3), k = s − 3, λ = u(s − 6), ρ1 = u(s − 9), ρ2 =
3u, u = 1, 2, ..., s = 10, 11, ...,

(iii) v = s, b = us, r = u(s − 4), k = s − 4, λ = u(s − 8), ρ1 = u(s − 16), ρ2 =
6u, u = 1, 2, ..., s = 17, 18, ...,

implies the existence of the A-optimal chemical balance weighing design.

Proof. It is easy to see that the parameters (i)-(iii) satisfy the conditions (4.3) and (4.4).

Example We determine unknown measurements of p = 6 objects by weighing them
n = 6 times and each object is weighed at most q = 4 times. For construction the design
we consider the ternary balanced block design with the parameters v = b = 6, r = k =
4, λ = ρ1 = 2, ρ2 = 1 (see Theorem 6(i)) and with the incidence matrix

N =


2 0 1 0 0 1
1 2 0 1 0 0
0 1 2 0 1 0
0 0 1 2 0 1
1 0 0 1 2 0
0 1 0 0 1 2

 .

Based on the matrix N we form the design matrix X of the A-optimal chemical balance
weighing design in the form X = N

′ − 1b1
′
v
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X =


1 0 −1 −1 0 −1

−1 1 0 −1 −1 0
0 −1 1 0 −1 −1

−1 0 −1 1 0 −1
−1 −1 0 −1 1 0

0 −1 −1 0 −1 1

 .

We have X
′
X = 4I6 and V(ŵi) = σ2

4
for i = 1, 2, ..., 6.

In the paper were presented conditions determined A-optimal chemical balance weighing
design and some new methods of construction of designs under assumption no all objects
are included in each measurement operation. These methods are based on the incidence
matrices of balanced bipartite weighing designs and ternary balanced block design.
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