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On Covariance Estimation when
Nonrespondents are Subsampled

Wojciech Gamrot

Abstract

The phenomenon of nonresponse in a sample surveyces the
precision of parameter estimates and introducedihe Several procedures
have been developed to compensate for these effels important
technique is the two-phase (or double) samplinges@ which relies on
subsampling the nonrespondents and re-approachirmg tn order to obtain
the missing data. This paper focuses on the apjicaf double sampling
to estimate the finite population covariance. Twavariance estimators
using combined data from the initial sample and the&sample are
considered. Their properties are derived. Two sgecases of the general
procedure are discussed.

1 Introduction

The estimation of covariances between individuglydation characteristics and of
the covariance matrix as a whole in the nonrespaitegtion has enjoyed vivid
interest for years. The principle of maximum likedldd (ML) plays a prominent
role in constructing estimators for covariance ntais as well as for individual
covariances. Finkbeiner (1979) applies Fletcher-®bw optimum-seeking
algorithm for obtaining ML estimates of covarianowtrix for factor analysis.
Lee(1986) proposes the estimation procedure undechwmissing values are
viewed as latent variables and estimators are pobthi under normality
assumptions via generalized least squares and NMigussher scoring (iteratively
reweighted Gauss-Newton algorithm). A coherent tiiean the use of maximum
likelihood principle to estimate the covariance matunder some model
describing the distribution of population values gsven by Little and Rubin
(1987). The Expectation-Maximization (EM) algorithny Dempster, Laird and
Rubin (1977) is contemplated as a standard metbodid¢aling with nonresponse
in a wide range of cases with special emphasishenniormal distribution. This
approach is further developed in subsequent pap¥#odruff (1990) considers
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alternative estimator based on the EM algorithmhwédditional restrictions
expressed by the regression superpopulation moa#inedder (2001) proposes a
regularized EM algorithm utilizing ridge regressjdor the case where number of
variables exceeds the sample size. Bentler and gLi§2003) discuss the
application of an EM-type gradient algorithm for nmaxm likelihood estimation
in the context of two-level structural equation retithg. Jamshidian (1997)
applies EM for confirmatory factor analysis. Jamsamdiand Bentler (1999)
explore the possibilities of using several compléa¢a algorithms (EM, Fletcher-
Powell and Fisher’'s scoring) to provide maximumelikood estimates of the
covariance matrix with missing data. Under a conmgetapproach Van Praag,
Dijkstra and VanVelzen (1985) construct an asymptily distribution-free
(ADF) estimator of the covariance matrix based orear regression. Arminger
and Sobel (1990) abandon normality constraints alseé pseudo-maximum
likelihood (PML) method by Arminger and Schoenberg9g9) to construct
estimators of covariance matrices while Yuan andntBe (1995) provide
theoretical justification for the use of PML in ethcontext of non-normal
distributions. Gold, Bentler and Kim (2003) compaAdDF estimators with
maximum likelihood estimators in the context ofustiural equation modelling.
Significant attention is also devoted to the usevafious imputation methods in
covariance estimation. Brown (1994) compares egbinsafor listwise deletion,
pairwise deletion and mean imputation. Kline (19@8mpares the properties of
estimators computed under mean imputation, regsassnputation and pattern
matching. Schafer and Olsen (1998) employ a methbdnwoltiple imputation
invented by Rubin (1987). They develop data augmantailgorithm and provide
justification for its use on the grounds of Bayestapory. Data augmentation is
also considered in the paper of Graham and Hof@0@2 and compared with the
EM method. The comparison of estimators for lisevignd pairwise deletion,
mean imputation and full-information maximum liketiod is given by
Wothke (2000). In this paper the problem of estimgtindividual covariance
between two population characteristics is discussgiker the quasi-randomization
approach (Oh and Scheuren (1983)). It is assumedl ttine nonresponse is a
random phenomenon but population values are fixed they are not subject to
modeling as opposed to most of the papers refetkabeve.

Let us consider some characteristics X and Y imdipopulation U of size N.
Fixed values of these characteristics are respelgtidenoted by X...,xy and
y1,...,\n. The aim of the survey is to estimate some funstiohthese values called
population parameters. Let the population be surdeyeording to the following
general two-phase sampling procedure. In the firgtse a random sample s of size
n is drawn from U according to some arbitrary samgpldesign p(s) determining

individual inclusion probabilities of the first oed 1t :Zsm p(s) and of the

second orderr; :Zﬂj p@S) for iz JU. We assume that nonresponse appears in
the survey, and consequently some units respontewilihers do not. The sample s
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may consequently be divided into two disjoint subsg and s such that units
from s respond and units from, do not. Following Cassel et al. (1983) we
assume that nonresponse is a random event govebyedome probability
distribution q(s;| s) usually referred to asesponse distribution(see e.qg.
Sarndal et al. 1992). In general, it is defined diionally with respect to s
in order to reflect the interactions between samplenits. The response
distribution determines individual response prohabi of any i-th unit
Pis :Zsﬁ g, |Is) and joint response probability of i-th and j-th itun
pijrs:len,j q@s, [s) for i#jOU. The distribution qg(s,| s) also determines the
behaviour of the random set which may be expressed as a function of s and s
so for any s=s-s we haveq(s,| s) = q@,| s) = q§.s,| s) The second phase of
the survey is then carried out and in this seconasp a subsample s’ of size n’ is
drawn from g according to the sampling design p’(s’$$,&hich is characterized
by another set of inclusion probabilities of thesfiorder m . :ZS.D p'S|ss, )

and second ordex :Zs.m p'S|ss, i¢j0U. We assume that necessary efforts

are undertaken in the second phase that guarat@enog complete responses
from all subsampled units. In the setup describledva three sources of sample
randomness were defined, each of them respectiastpciated with probability

distribution p(s), q(ds) and p’(s’|s®. All expectations will be computed jointly

with respect to these three probability distribn8ainless otherwise stated.

2 Estimation of the population total

Let us consider the population total of X (the sam&y be defined for Y or any
other characteristic):

t, = > X (2.1)

iou

Under complete response it is unbiasedly estimdtgdthe Horvitz-Thompson
(1952) statistic:

i, = zx_i (2.2)

ios T4

In particular, by putting x1 for iU we obtain an unbiased estimator of the
population size N in the form:

N=y2 B

ics T
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Both estimators above are generally biased underasponse. As an example
consider deterministic nonresponse model, accordmngvhich the population is
divided into two strata: Uand U, of sizes N and N such thafp;=1 for iJU; and
pi=0 otherwise. If the sample is drawn using simpd@dom sampling without
replacement (SRSWOR), and hence inclusion prol#sliof the first and second
order are respectively equal #p=n/N andm;j=n(n-1)/(N(N-1)) for #j0JU then the
estimator turns out to be biased and its bias imktp:

B(Ex) =ty "4 = _Z iU, Xi (2.4)

where t,, :Zmulxi . The bias does not depend on the sample size andehit

does not tend to zero with growing n. However, gsihe data from both phases
we can construct an unbiased estimator of the form (S&rndal et al 1992):

(MDY (2.5)

ios T o TT s,

Putting %=1 for iU we again obtain an unbiased estimator of N:

N.:Zi_l_z 1

ios, 4 ios TGT

(2.6)

iss,

These estimators will be used further as buildingcks for more complicated
estimation procedures.

3 Estimation of the population covariance

Let us consider the population covariance betweeranXl Y defined by the
expression:

iou jou jou

Cu(X.Y) =N%Z[xi —$2xjj[yi —ﬁzyj] (3.1)

or by the equivalent formula:

1 1
C,(X,Y) = t, - t t
(XY N-1% NN-2 *”

where t,, => o, Xy, t, =Y,y X, and t, =>" ., y,. Under complete response

(3.2)

the covariance is often estimated by respectivissies:

S(xY)=—1 1, -~ it
N-1 N(N -1)

(3.3)
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and

C,(X,Y)=—-1t, —=—=—T1_t (3.4)

where unknown population totals are replaced wittrresponding Horvitz-
Thompson estimators. As indicated by Sarndal ef18B2), the latter is usually
preferred to the former due to better variance props. These covariance
estimators are however biased under nonresponsa,special case let us consider
SRSWOR and deterministic nonresponse. For largepkamsize approximate
biases of both estimators respectively take thenfor

AB(C,(X,Y))=C, (X,Y)=Cy(X,Y) (3.5)
AB(C,(X,Y)) =Cy,(X,Y) =Cy(X,Y) (3.6)
where
Co, (X Y) Tty —— Tt (3.7)
. N-17"" N(N-1)
Co (KY)=— Tt )~ ot 1, (3.8)
Y Nl_l o Nl(Nl_l) e

while t,, => 0. X, ty, =D oY, and t,, => ., XY,. Hence the bias does

not tend to zero when n grows in an apparent aryaloghe expression (2.4). In
order to correct for the bias we propose to repldoevitz-Thompson estimators
with their unbiased double sampling counterpartBisTleads to two alternative
estimators of the population covariance:

- 1 - 1 -
C.(X,Y)= t, - tt 3.9
1) N-1% N(N-1) 7 (3.9)

and

&,2(X,Y) __ 1 T 1 ~en.

- == 3.10
o TR R D (3.10)

Using Taylor linearization we obtain the approximaariance of&:,l(X,Y):

AV(&.l(x,Y))=(Nf1)z{ZuUJ(L—1J+qu[ZUUJ[ St —1m (3.11)

iU T 08, TG\ T iss, T s,

where

U = (x = X)(y; - Y) =X (3.12)

while X =t /N andV:ty/N. The approximate bias may be expressed in the

form:
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A I S N . R
ABCAOCY) =~ e -y {%xy,[m 1J+Ep{i§z”i’”( 1]]}

i Tiss, ™ jss,
(3.13)

It is worth noting, that this approximation of thes is obtained by expanding the
estimator in Taylor series including terms up te gecond order, as opposed to
more crude approximations based only on first-org@ems. The symbols AB and
AV are used to distinguish linearization-based appnations from the exact bias
and variance. Using the same method we obtain theroximate variance

of é,z(X,Y) in the form:

p - i U:Uf i
AV(C_Z(X,Y)) :;2 ZUiuj L_l +qu z ] Tijss, -1
(N _1) i,jou T, 05, TG\ T s, T s,

(3.14)

where

U = = X)y, -¥) - Cy(X,Y) (3.15)

and its second-order bias:

AB(é,z(x,Y)):—m{zu;(z—;ﬂ}mm[z nu;t [n: = —1}}} (3.16)
i,jou i,j0s, 147t ibS,

i jbs>

where

u = Nz(ui+uj)+%N(N—1)((Xi—Xj)(yi—yj)+ui+uj+2CU(X,Y)) (3.17)

N

The symbolE (] appearing in expressions above represents thectatpmn with

respect to first-phase sampling design p(s) anthéoresponse distribution g[s).
On assumed level of generality it is impossible eélominate them from AV
formulas but we may achieve this by making add@iloassumptions concerning
the second phase sampling design and responsdbdigin. The example is
shown in the next section.

On the other hand, the approximate variances magshienated, without any
assumptions, by employing the approach of Sarndall €1992) which leads to
respective statistics:

YI7, _ 1 U [ m U, T iss,
V(C..(X,Y) = —-1 -1 3.18
( .1( ) (N _1)2 ( Z [ J"‘ Z - [ J] ( )

O
i,j0s, 08 nij TCiTC]- i, jos TCiTC]-TC T ils,SzTc Iss

and
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V(C.,(X,Y)) = L -1+ ' B2 -1
2 (N -1)? i’j[blZDg nf T, i;Ds T e,

i Tiss, ™ s,
(3.19)
where
. : t ) tit
u; :(Xi _tﬁxj[% _ﬁyJ_ Nzy (3.20)
o t: t ~
u =|x, —== === |-C.,(X,Y 3.21
i ( 1 N. j(yl N. j 2( ) ( )
and
Ty, fOr 0 j0s,
s T s, for i0s, jOs (3.22)
' mym, for i0s, j0s, '
u for i,j0s

If the statisticsU, and U; estimated constants. and u; without error, then
variance estimators above would respectively beiagda forAV(&,l(X,Y)) and

AV(E:,Z(X,Y)). Obviously they do not and some bias appears,waitmay hope

that it remains modest and tends to zero for lag®plesWe will now present
two important special cases of the general proeguesented above.

4 Equal probability sampling

Let us assume as in papers of Srinath (1971) arw (R286) that SRSWOR is
used in both phases. Hence inclusion probabilibifethe first and second order are
respectively equal ta;=n/N andm;=n(n-1)/(N(N-1)) for #OU in the first phase
while m,. =n'/n, and m,, =n'(n"-1)/(n,(n,-1)) for i#LU in the second
phase. We also assume that the subsample size lisear function of the
nonrespondent subset size according to formulascn, where 0<c<l is a
constant fixed in advance. Furthermore, we assueterohinistic nonresponse
model described earlier. Under these assumptionbave N'= N Consequently
both estimatorsf:,l(X,Y) and é,Z(X,Y) are mutually equivalent and take the
common form:

C.(X,Y) =Tt =T
N-17° N(N-1)

(4.1)
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where
t (Zx y, + nyj (4.2)
i0s; Cics
——(Zx += Zx ] (4.3)
|Ds
——(Zy. Zyj (4.4)
i0s; Cios
The approximate variance 61‘+(X,Y) may be expressed as:
P N> (N-n W, 1-c
AV (C,(X,Y)) = S (u)+—2——% 4.5
(C.(X,Y)) (N_l)z[ S+ Uz()j (4.5)
where
2
) 1 1
w=—7—7—->|u-—>u (4.6)
> N—lmu[ NEZLJ: Jj
2
, 1 1
(w= u-——> u 4.7)
SJZ Nz_li%:z( NziDUz ]J
The second-order approximate bias is
- 1 N-n W, 1l-c
AB(C, (X,Y))=- C,(X,Y)+—2—C, (X,Y 4.8
(C.(X,Y)) NZ(N—l)Z( u(X,Y) - ( )j (4.8)
where
1
T N
2 iou 2 j0u, 2 j0U,

and W,=N,/N. Both approximate bias and approximate variadeerease when
initial sample size n grows. From (3.18) we alstadi the variance estimator:
N N-n
(N-1)% n(n-1)
N(n,-D-cn,(n-1)+n
c(N-n)

V(C.(X,Y)) =

( (n, - DS, (u) +

1s§.(u+)+%(ugl—u;)2J (4.10)
n

where
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w=lyo (4.11)
nl i0s;
=iy (4.12)
n ids'
+ 1 Ar ot
S (uY)= D0 -ug)? (4.13)
nl_liDSl
S () =—— Y (0 - T (4.14)
I“I_]-iDs'
and
N Y )
u =| X =2y ——=|- . 4.15
o) v

5 Unequal probability sampling

We will now focus on another special case of theegal two-phase procedure.
The deterministic nonresponse model assuming thapanse probabilities are
either equal to zero or equal to unity is seldomlistic. In practice they are more
likely to take any value from the <O0,1> intervaldadepend on the auxiliary
variables as well as the variable under study. artipular it may be more
reasonable to assume that response probabilitedascribed by logistic model
given by expression:

pi = (L+expPx;)™ (5.1)

where xis some vector of auxiliary variables correspondiaghe i-th population
unit while B is the parameter vector. Also, more sophisticagachpling designs
that make use of auxiliary information to improveetefficiency of parameter
estimates are often preferred to the SRSWOR. Onesuch designs, known as
Pareto sampling (Rosén 1997), allows to draw adfigize sample with first order
inclusion probabilities approximately proportiontd the values z...,zy of the
auxiliary characteristic Z. According to this pracge the sample s of the size n is
drawn in following two steps (Sarndal and Lundstr2@05):

1) For any DU a realization uy of a random variable having uniform
distribution on the <0,1> interval is generated &ne following expression
is evaluated:
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u(l-mn)
q = (5.2)
T§ @- ui)
where the desired inclusion probabilityis given by expression
.

2.7
iou
If 7;>0 then i-th unit is automatically included in teample and inclusion
probabilities for remaining units are recomputedadingly.

2) The population subset consisting of n units havimg largest values ofiq
is included in the sample.

Proposed covariance estimators are not equivalewt iComputation of their
properties in such a situation using general foaaubr approximate variance and
approximate bias derived above is possible whenesarasonable assumptions are
made about response distribution. However, to etaluexact inclusion
probabilities it is necessary to use numerical pthoes developed by
Aires (2000). This makes the analytical comparismin covariance estimators
difficult. Hence, a simulation study was carriedt ao order to compare both
covariance estimators.

During simulation experiments, the population unsierdy was represented by
the data obtained from the Polish’1996 agricultucainsus representing 2420
farms in three boroughs (Bolestaw, ¢Boszow, Radgoszcz) of theabrowa
Tarnowska district. Three variables were used idiclg farm sales (X), farm cattle
stock (Y) and farm area (Z). The covariance betw¥eand Y was the estimated
parameter. A logistic nonresponse model was anbyraassumed stating that
population units respond independently with resgopsobabilities respectively
equal to pi=(l+exp@otPixi+B2yi))t for iOU with the parameter vector
B=[Bo,B1,B2] chosen arbitrarily. Two simulation experiments reverespectively
executed forp=[0,0,0] (pi independent on X,Y) an®=[0,1,1] (pi dependent
on X,Y). The simulations were independently repdatffor Pareto sampling
utilizing Z as the auxiliary variable in both phaseand for simple random
sampling without replacement in both phases. Thmesaample size n=100, 150,
..., 600 was always assumed for both designseBoh sample size the drawing of
40000 sample-subsample pairs was simulated, andptbperties of estimators
were assessed on the basis of their empiricalidigions. Hence, each point on

following graphs corresponds to 40000 estimatesintedors f:,l(X,Y) , é,Z(X,Y)

and @+(X,Y) were compared. In the graphs they are respectidelyoted by
abbreviations (Covl, Cov2 and Cov_srs).

The mean square error (MSE), the bias and the sifabeas in MSE observed
in the first experiment are respectively shown oguFes 1, 2 and 3.



On Covariance Estimation when Nonrespondents ales&upled 105
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Figure 1: MSE as a function of n fo8=[0,0,0],
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Figure 2: Bias as a function of n f@3=[0,0,0].

The MSE of all three estimators decreases with gigwsample size. This
observation is consistent with asymptotic resulisamed for the SRSWOR case.

For any value of n the estimat@,l(X,Y) is much less accurate than others. The
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lowest mean square error is observed tfbg(X,Y), which is significantly better

than other two in terms of MSE. The bias of allerestimators is negative and its
absolute value decreases with growing n. This $® alonsistent with asymptotic
results for SRSWOR. The share of bias in the MSBpgroximately constant for

each estimator. It does not exceed 1,4%@0;(X,Y) and 0,4% forf:,l(X,Y) and
Q(X,Y). Hence, each estimator may be treated as approgiynanbiased.

1,6%
1,4% 3

1.2% D\D—DN—/_'\D\,-\ J——0
1,0% —— Covl

0,8% —{3—CoWv2
0,6% —O— Cov_srs

BB/MSE

A

0,4%
0,2% W
0,0% N O=O=— T O=G0—0—0

T T T r T T

100 150 200 250 300 350 400 450 500 550 600

n

Figure 3: Share of bias in MSE as a function of n 3#[0,0,0].

The mean square error (MSE), the bias and the sifabeas in MSE observed
in the second experiment are respectively showkigares 4, 5 and 6.
Again, the MSE of all three estimators tends taerdase with growing initial

sample size. For any value of n observed MSE ofet$ltérnatorf:,2(X,Y) is the
lowest and observed MSE of the estimang(X,Y) is the highest. The bias is
negative foré,l(X,Y) and f:+(X,Y) while oscillating around zero foé,z(X,Y).
Its absolute value is lowest fch,Z(X,Y) and highest fo@,l(X,Y). The observed
share of bias in the MSE is again negligible, note=ding 0,05% forf:,z(X,Y)
and 0,5% for the other two estimators.
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Figure 4: MSE as a function of n f¢8=[0,1,1].
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Figure 5: Bias as a function of n f@3=[0,1,1].
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Figure 6: Share of bias in MSE as a function of n g#[0,1,1].

6 Conclusions

In this paper two nonresponse-corrected estimatmrsthe finite population

covariance are considered under quasi-randomizatagproach. They are
computed using the data obtained using a generalptvase sampling procedure
involving arbitrary sampling designs in both phasEBeir approximate variances
and biases are derived under stochastic nonrespomaeacterized by arbitrary
response distribution. No model assumptions on famn distribution are made
for their derivation, which alleviates the risk ofodel misspecification. For the
important special case of simple random samplingheut replacement and
deterministic nonresponse derived formulas sugtjest proposed estimators are
nearly unbiased. The results of simulation expentsecarried out for another
special case of stochastic nonresponse and Paaetpling also seem to support

this hypothesis for estimatoré+(X,Y) and C,Z(X,Y). It is worth noting that the

properties of proposed estimators have been deriged simulations were
executed under the assumption of complete respontdee second phase. Further
research is needed on their properties if this mgdion is not satisfied.
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