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Abstract
This paper discusses the 1974 Merton’s model in light of the minimum regulatory

requirements of the Internal Ratings-Based (IRB) Approach provided in the Direc-
tive 2006/48/EC of the European Parliament and of the Council for the calculation
of capital requirement for credit risk. The basic purpose is to illustrate potential de-
ficiencies of the model in assigning obligors ratings and/or estimating probability of
default to which supervisors should be attentive when validating this model in bank’s
IRB approach. The procedures of three estimation methods of Merton’s model are
described (calibration, Moody’s KMV, maximum likelihood estimation), based on
which deficiencies of this model can be identified. The Merton’s model per se does
not ensure compliance with the minimum requirements of the IRB approach for the
estimation of probability of default, as its theoretical assumptions often do not reflect
reality. It is therefore necessary to calibrate the fundamental parameters estimated
by the model using empirical data on defaults, which must be defined in accordance
with the regulatory minimum requirements, and must be representative of the pop-
ulation for which the model is valid. Results on the simulated data also show that
calibration method provides different estimates of probability of default for the same
obligors compared to other two methods. Differences are mainly influenced by the
volatility of equity and leverage in the time series, which calibration method does
not sufficiently account for. Some regulatory minimum requirements can be relaxed
when obligors are being assigned ratings on the basis of the Merton’s model esti-
mation methods. However, the results of the analysis on simulated and empirical
data show that different estimation methods generate different obligor credit rating
assignments.

1 Introduction
With the advent of the Internal Ratings-Based (IRB) Approach in the Directive 2006/
48/EC of the European Parliament and of the Council (CRD), statistical modeling has
come to the fore of credit risk management. Not only are default prediction models the
centre of interest when it comes to the IRB approach, credit models also form the basis
of the equation for calculating capital requirements for credit risk using an IRB approach
(Gordy, 2003; Basel Committee on Banking Supervision, 2004).

From a quantitative point of view, the IRB approach is defined by three random vari-
ables as key risk parameters: Probability-of-Default (PD), Loss-Given-Default and Con-
version Factor. These parameters are always input data for calculating capital require-
ments for credit risk using the IRB approach. The best investigated of them is PD, which
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therefore has the greatest number of methodologies for its estimation. The CRD takes this
methodological diversity into consideration, and does not prescribe any methodology that
a priori would be more desirable than any other for rating obligors and estimating PD.
European banking supervisors within the Committee of European Banking Supervisors
in Guidelines on the implementation, validation and assessment of Advanced Measure-
ment (AMA) and Internal Ratings Based (IRB) Approaches (2006, hereafter Guidelines
on Validation) also came to the same conclusions, and explicitly stated that the use of
multiple methodologies is allowed, and that it is up to banks to substantiate their models
if they intend to use them to calculate capital requirements.

The Oesterreichische Nationalbank in the document Rating models and Validation
(2005) classifies the existing methodologies for estimating PD into three groups: (1)
heuristic models, (2) statistical models, and (3) causal models. This paper only focus
on the third type of models, more specifically the structural model first articulated by
Merton (1974), which Altman (2006) calls a first-generation structural model. On the
basis of the Merton structural model estimates of PD are made for fictitious companies
using simulated data, and for certain Slovenian companies in the main Ljubljana stock ex-
change index (SBI20). Estimates of PD are provided for a one-year time horizon, which
are derived from the movement of market prices of equity. To this end, three methods
for estimating PD will be used, all based on the 1974 Merton model: (1) the calibra-
tion method (e.g. see Bruche, 2005), (2) Moodys KMV (the MKMV, see Crosbie and
Bohn, 2003) method, and the maximum likelihood estimation (MLE) technique proposed
by Duan (1994, 2004). The purpose of this paper is to identify any differences in the
estimates of parameters under individual methods, and to establish the usefulness of the
traditional Merton’s model in the IRB approach, in general and for listed Slovenian com-
panies, from the point of view of rating obligors or from the point of view of estimating
PD.

This paper is organized as follows: the second section provides the theory of the 1974
Merton’s model, which represents the basis for forecasting PD. The third section describes
the derivation of the calculation of asset value and asset volatility on the basis of empirical
(market) value of equity and estimates of their volatility. The fourth section illustrates the
point of view of meeting the minimum requirements of the IRB approach, depending on
whether the model is being used for the purpose of rating obligors or for the purpose of
estimating PD. The fifth section presents the data. The sixth section provides calculations
of one-year estimates of PD under all three methods. The seventh section summarizes the
papers findings, and gives the starting points for further discussion.

2 Assumptions of the structural model
In the 1974 Merton’s model, equity represents a call option on the companys assets held
by the holders of the equity. The financing of the company is simple. It consists of one
type of equity issued at time t (Et) and zero-coupon debt issued at t (Dt) with face value
of L maturing at time T . The strike price of the call option is the same as L. L already
includes some accrued interest at a rate reflecting the company’s riskiness. Debt holders
finance company’s assets at time t with an amount equal to Dt, and at T they receive an
amount equal to min [AT , L], where AT is the market value of assets at maturity. In this



The Merton Structural Model and IRB Compliance 41

financing structure the market value of the companys assets at time t is given by:

At = Et +Dt. (2.1)

The dynamic of asset value At follows a geometric Brownian motion as follows:

d lnAt = µAdt+ σAdZt, (2.2)

where µA is the constant return or drift, σA is the constant standard deviation, and Zt is
the normal random variable N ∼ (0, 1). The solution to equation (2.2) can be obtained
using Ito’s lemma, and is

AT = Ate

(
µA−

σ2
A
2

)
(T−t)+σA

√
(T−t)Zt

, (2.3)

where (T − t) is remaining maturity.
The market value of the assets at time t has a log-normal distribution. The natural

logarithm of returns on the companys assets ln(AT/At) is distributed normally

N ∼
((
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σ2
A

2

)
(T − t), σ2
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)
.

The market value of the companys equity at time T is given by

ET = max[AT − L, 0]. (2.4)

Equity holders will exercise the option if the market value of the assets at maturity
(AT ) is higher than the strike price of the option. In this event they will purchase the
companys assets at a price below the market value. In the event AT < L, which defines
the default event in Merton’s framework, there are no assets left that could be taken over
by the equity holders.

Under certain assumptions (Merton, 1974) the solution to (2.4) for equity values in t
is given by the Black-Scholes (1973) equation for pricing a call option

Et = AtΦ(d1)− Le−r(T−t)Φ(d2), (2.5)

where
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, (2.7)

and r is the risk-free interest rate, and Φ() is the cumulative distribution function of the
standard normal variable. Equation (2.7) describes the number of standard deviations of
natural logarithms of At/L from the mean. MKMV calls this interval the distance-to-
default, but it is defined differently elsewhere (see Crosbie and Bohn, 2003).
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The model so defined, the traditional Merton’s model, forms the basis for estimating
PD.

By rearranging (2.3) an estimate of PD is

PDt = P [AT ≤ L]

= P
[
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=
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−∞
φ(x)dx. (2.8)

Here, φ is the probability density function of a standard normal variable. Note that
equation (2.7) is not a function of µA, like (2.8). If µA = r, then PD is identical in both
equations.

3 Market value of assets from market value of equity

The market value of assets At is a random variable that cannot be observed directly. It
would therefore also be impossible to directly estimate the drift and the standard deviation
in the movement of the natural logarithms of returns on the market value of assets. All
three parameters are necessary for the estimation of a company’s PD. Notwithstanding
that the traditional Merton’s model assumes a simple debt structure, and is thus highly
simplified, it proceeds from an assumption of the observed market values of assets that
empirically cannot be realized. However, the market value of assets, the drift and the
standard deviation can be estimated indirectly from (2.5) and the observed market value
of equity Et.

This paper makes use of three methods for estimating these three parameters, from
which the one-year PD is estimated. All three methods are implemented in the R statistical
software2.

3.1 Calibration method

The first method, which Bruche (2005) named the calibration method, uses iteration to
solve the system of two equations with two unknowns (Bruche, 2005; Crosbie and Bohn,
2003; Bluhm et al., 2003; Ericsson and Reneby, 2005; Elizade, 2005), namely (2.5) and

σE =
At
Et

Φ(d2)σA. (3.1)

2R is freely accessible at http://www.r-project.org.

http://www.r-project.org
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This first method is defined as follows. The initial values Â(i)
t and σ̂(i)

A are chosen
arbitrarily3. Initial values of Â(1)

0 = E0 and σ̂
(1)
A = σE were used in the paper. For

empirical data, E0 is the market capitalisation of the company at the end of the year
(number of shares multiplied by share price). For simulated data, E0 is defined in section
5.1. For empirical data, σE is estimated from the time series of daily natural logarithms
of returns on the companys equity

σ̂E =

√√√√ 1

n

n∑
t=1

(
Xt − X̄

)2√
250,

X̄ =
1

n

n∑
t=1

Xt,

where Xt ≡ ln(Et/Et−1), t = (0, . . . , n) and r is the interest rate on 12-month treasury
bills. For simulated data, σE is defined in section 5.1. For empirical data, L is the total
book liabilities from the consolidated balance sheet at the end of the year. For simulated
data, L is defined in section 5.1. The defined values are input into the following iterative
procedure:

1. (2.5) is solved;

2. the new solution of Â(i+1)
0 is input into (3.1);

3. the new solutions of Â(i+1)
0 and σ̂(i+1)

A are re-input into (2.5).

The procedure is repeated until the differences in Â0 and σ̂A between successive iter-
ations are sufficiently small4. Usually it only takes a small number of iterations for the
values to converge to produce estimates of the desired parameters. The values obtained
allow for the calculation of an estimate of PD from (2.8). For this estimate of PD, µA = r
and the one-year return on the companys assets is equal to the return on 12-month treasury
bills5.

3.2 MKMV method
The second iterative procedure estimatesAt, σA and µA. The latter is important for the es-
timation of PD as a function of drift. The second iterative procedure follows the disclosed
part of the MKMV methodology for the calculation of Expected Default Frequency (Cros-
bie and Bohn, 2003; Vassalou and Xing, 2004; Duffie et al., 2005; Duan et al., 2004). The
time series of daily market value of equity from which the parameter is estimated is equal
to n days, where t = (0, . . . , n). Following the same notation as Duan et al. (2004), the
coefficient h = 1/(n/no. of years) is introduced, which serves to convert the daily values
into annual values of the parameters. The initial values entered into (2.5) are Â(1)

th = Eth,

3ith itertion, i = 1 is the first in the series of iterations, t = 0 and T − t = 1.
4An absolute difference of 10−10 is used in this paper.
5The treasury bill yield is commonly used in the literature as the risk-free interest rate r.
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while L and r are defined as in the first iterative method, µ̂A and σ̂A are stipulated arbitrar-
ily, and the maximum maturity of the debt L is equal to T . Each iteration produces a time
series of daily values Âth, where the maturity of the debt ranges from 1 ≤ (T − th) ≤ T .
The procedure is as follows:

1. calculation of the daily value of Â(i)
th , th = (0, . . . , nh) from (2.5) ;

2. calculation of the arithmetic mean of the sample

R̄(i) =
1

n

n∑
t=1

R̂
(i)
t (3.2)

R̂
(i)
t ≡ ln(Â

(i)
th /Â

(i)
(t−1)h);

3. calculation of the standard deviation

σ̂
(i+1)
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√√√√ 1
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n∑
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)2

(i)

; (3.3)

4. calculation of the drift µ̂A

µ̂
(i+1)
A = R̄(i) 1

h
+
σ̂

2 (i+1)
A

2
; (3.4)

5. return to the first step for the calculation of Â(i+1)
th using µ̂(i+1)

A and σ̂(i+1)
A from the

second step.

The procedure is repeated until the differences in µA and σA between successive itera-
tions are sufficiently small. The procedure usually converges quickly. The values obtained
allow for the calculation of a one-year estimate of PD from (2.8). This time the estimate
of PD is the function µA, and the one-year return on the companys assets is equal to the
average return on the company in the previous sampling period.

For the given sample it is possible to use an analytical solution for the standard errors
in µA and σA, respectively, as follows:

s.e.(µ̂A) = s.e.

(
R̄ +

σ̂2
A

2

)
1

h
=

σ̂A√
nh

(3.5)

s.e. (σ̂A) =
σ̂A√
2nh

. (3.6)

3.3 MLE - Maximum likelihood estimation method
The third method follows the methodology proposed by Duan (1994), later augmented
by Duan et al. (2003, 2004). This is an estimation of parameters based on maximum
likelihood estimation.
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Duan et al. (2004) introduces the following log-likelihood equation for the estimation
of µA, σA, and Ath on the basis of observed market values of equity

l(θ̂A; Âth|Eth) = −n
2

ln(2πσ̂2
Ah)− 1

2

n∑
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(
R̂t −

(
µ̂A −

σ̂2
A
2

)
h
)2

σ̂2
Ah

−
n∑
t=0

ln(Âth)−
n∑
t=0

ln (Φ(d1))

(3.7)
where θ̂A ≡ (µ̂A, σ̂A), Âth is estimated from (2.5) and Φ is the cumulative distribution

function of a standard normal variable.
The time series of daily market value of equity from which the parameter is estimated

is equal to n days, where t = (0, . . . , nh). Each iteration produces a time series of daily
values Âth, where the maturity of the debt ranges over 1 ≤ (T − th) ≤ T . All the initial
values input into (2.5) are the same as in the MKMV method.

The estimation procedure is as follows:

1. calculation of the daily values of Â(i)
th , th = (0, . . . , nh) from (2.5);

2. calculation of µ̂(i+1)
A , σ̂(i+1)

A and their standard errors by finding the maximum (3.7).
The standard errors are derived from a diagonal of the Hessian matrix6;

3. return to the first step for the calculation of Â(i+1)
th using µ̂(i+1)

A and σ̂(i+1)
A from the

second step.

The second step involves the iterative solution of the optimization problem, and thus
an iterative procedure for finding the maximum of the logarithm of the maximum like-
lihood function within the second iterative procedure consisting of the steps described.
Duan et al. (2004) show that the above iterative procedure is an expectation-maximization
algorithm. They find that the MKMV method is equivalent to the MLE method, but
state that the latter method is preferable for inference statistics. The equivalence can
be observed both in the equivalent estimates of the parameters and in the logic of the
expectation-maximization algorithm. The MLE method should also produce equivalent
standard errors for µA and σA as in (3.5) and (3.6). This can be observed in the analytical
solution to the log-likelihood equation for estimating standard errors for µA and σA, in
the case of a univariate standard normal random variable

l(R̄, σ̂A; R̂t) = −n
2

ln(2πσ̂2
Ah)− 1

2

n∑
t=1

(
R̂t − R̄h

)2

σ̂2
Ah

. (3.8)

Equations (3.2) and (3.3) are both analytical solutions to log-likelihood equation (3.8)
for R̄ and σ̂A7 or µ̂A. This completes the evidence of the equivalence of the MKMV and
MLE methods.

6In this paper the optim (Nelder-Mead) algorithm was used in R statistical software and the diagonal of
the Hessian matrix was used from it.

7The proof is in Campbell, Lo and MacKinlay (1996), chapter 9.
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4 Compliance of the Merton’s model with the minimum
requirements of the IRB approach

With the advent of the CRD, banks are be able to use a variety of rating systems for as-
signing obligors to an obligor rating scale and for estimating PD. The Merton’s model
and its variants (the MKMV) seem to be the most suitable for listed companies. How-
ever, even a theoretically clear model like the Merton’s model, and the various methods
for estimating the parameters of the model, are subject to the minimum requirements of
the CRD, which the model must fulfill if its results are to be used to calculate capital
requirements for credit risk. The theoretical model per se does not fulfill the minimum
requirements.

In order to analyze compliance with the minimum requirements, it is reasonable to
observe the Merton’s model separately for each of its two purposes, namely as a method
for assigning obligors to an obligor rating scale, and as a method for estimating PD. The
latter can implicitly be considered as an assignment to a continuous rating scale or direct
assignment of rating grades, as provided for by the CRD (Annex VII, Part 4, paragraph
4). In this case it is a method for assigning and estimating PD.

4.1 Compliance of the definition of default

The following definition of default is determined in the CRD:
”A ’default’ shall be considered to have occurred with regard to a particular obligor

when either or both of the two following events has taken place:
(a) the credit institution considers that the obligor is unlikely to pay its credit obli-

gations to the credit institution, the parent undertaking or any of its subsidiaries in full,
without recourse by the credit institution to actions such as realising security (if held);

(b) the obligor is past due more than 90 days on any material credit obligation to the
credit institution, the parent undertaking or any of its subsidiaries” (paragraph 44, Part 4,
Annex VII of the CRD).

In the Merton’s model a default is considered to have occurred when the value of
the debt L exceeds the market value of the assets at maturity. This situation could be
interpreted in a way that the event (a) in the above definition of default has taken place, i.e.
the obligor is unlikely to pay its credit obligations (at maturity). However, the definition
of default of the Merton’s model is not in full compliance with the definition in the CRD,
as it does not cover all potential events included in the CRD’s definition of default.

Another (possible) non-compliance of Mertons model regarding definition of default
is the restriction of default time to the maturity of the debt. Default can be defined only at
the maturity of debt (e.g. one-year) and not earlier, meaning that the estimates of PD are
valid for precisely that time point. However, CRD stipulates that ”probability of default
means the probability of default of a counterparty over a one year period” (paragraph 25,
Article 4). Rigorous interpretation of this definition in CRD might put to the question the
compliance of PD estimates from Merton’s model. To the author’s knowledge, in the IRB
approval processes there were no rejections by the supervisors of Merton’s model because
of the restriction of default time to the maturity of debt.

The composition of the debt represented by the value L is closely tied to the definition
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of default. The value of the debt L can be interpreted as a calibrant, i.e. the value that can
be calibrated with regard to empirical data on defaults that were preliminarily defined in
accordance with the CRD. In other words, for a compliant definition of default, the value
of the debt L is the value that must be calibrated to reflect the appropriate debt structure in
connection with empirical data on defaults. Davydenko (2005) analyses this relationship,
but the definitions of default from which the values of the debt L are calibrated are not
fully in accordance with the definitions in the CRD. When assessing Expected Default
Frequency, the MKMV method includes the companys short-term debt and half of its
long-term debt in L, which is an industry benchmark.

The distance-to-default can also be interpreted as a calibrant. Using this type of cal-
ibration to empirical data on defaults, MKMV (Crosbie and Bohn, 2003) for example
addresses the problem of inaccurate calibration of the structure of L and all other in-
fluences not covered. The calibration of distance-to-default implicitly calibrates all the
estimated parameters.

As in Bharath and Shumway (2008), this paper uses the total book liabilities as the
value L for empirical data.

Where a bank is using the Merton’s model or variant estimation methods in the IRB
approach merely as a method for assigning obligors to an obligor rating scale, some of the
requirements can be relaxed. As proceeds from Guidelines on Validation (2006), in such
a case there is no need for full compliance in the definition of default, and consequently
for the calibration of either L or the distance-to-default. Where a bank is intending to use
the Merton’s model as a direct method for estimating PD for obligors, supervisors will
require a time series of appropriately defined defaults (long-run average default rate) with
which either L or the distance-to-default will be calibrated.

4.2 Compliance with the data requirements
Data must be representative for building the model (point c, paragraph 30, Part 4, Annex
VII, CRD). Given that there is just one obligor is this method of assignment/estimation,
and usually uninterrupted capture of market value of equity in recent years, the represen-
tativeness of the data primarily relates to the population from which the long-run average
default rate is calculated and with which the model of PD estimates is calibrated. The
representativeness of the population from which the empirical data on defaults is taken is
important when the bank is using the Merton’s model as a direct method for estimating
PD. In general this means that empirical data can only be obtained from a population on
which this model can be used. If the model is being used solely as a method for assigning
obligors, the requirement for data representativeness can be relaxed. In the latter case the
data for the long-run average default rate is of no relevance.

The time series of the data (the observation period) is also subject to minimum re-
quirements. For the estimation of PD the length of the underlying historical observation
period used shall be at least five years for at least one source (paragraph 66, Part 4, An-
nex VII, CRD). This means that, theoretically, direct estimates of PD from the Merton’s
model (this applies to all three methods discussed here) shall be made on five years of
data on daily market value of equity and debt. In addition, this holds true only if all other
assumptions of the model are valid. However, several questions arise with respect to the
use of historical observation period, i.e. the time series of daily/quarterly/yearly market
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value of equity in the Merton’s model. Is it compliant with the CRD that a bank is us-
ing estimates of PD based on one year of the data on daily market value of equity, while
the L/distance-to-default were calibrated with five years historical observation period on
defaults? The answer might be affirmative as understood by the term ”for at least one
source”. What time series of daily/monthly/yearly market value is sufficient? To what
extent these requirements apply if the model was used solely as an assignment method?

4.3 Distribution of natural logarithms of returns

The Merton’s model assumes a normal distribution for the natural logarithms of returns
on the companys assets ln(At/At−1). This assumption often proves to be invalid. In
particular this applies to the distribution of the daily market values of assets, estimated
from daily market values of equity. This usually has a sharper peak, with comparatively
greater density in the tails of the distribution. This does not apply solely to marginal,
low-liquidity markets such as Slovenias, but also to more established markets. Some
authors suggest that natural logarithms of returns are described by other distributions,
such as those from the family of generalized hyperbolic distributions (e.g. Eberlein and
Prause, 19988). For supervisors it is important whether the estimation of PD takes into
consideration statistically significant deviations in the distributions of returns from the
normal, how such obligors are treated, and, in general, how this deficiency is eliminated or
mitigated. Such a potentially erroneous assumption about the distribution of daily natural
logarithms of returns can again be corrected by means of calibration of the distance-to-
default or of L, which the MKMV method does when calculating the Expected Default
Frequency. Such calibration or another correction is vital when the model is being used
for estimating PD and for calculating capital requirements in the IRB approach.

4.4 Constant return µA vs. risk-free interest rate r

As stated, PD is estimated on the basis of (2.8), where either µA = r or µA is estimated
on the basis of (3.4), or directly from (3.7). Inaccuracy in the estimated PD values can
derive from the differences between µA and r, as µA ∈ R (namely µA ∈ R+)9, while
r is constant. Specifically, the calibration method does not provide for an estimate of
µA. This deficiency is of particular importance in the use of the calibration method and
estimates of PD therefrom in the calculation of capital requirements in the IRB approach.
The difference between µA and r can also be a reason for the obligor being assigned
a different credit rating, if it is assumed that the other values in (2.8) are unchanged.
Therefore the calibration method is potentially less accurate both from the point of view
of estimating PD and the point of view of assigning obligors to the obligor rating scale.
If the minimum requirements of the CRD described above relate to the basic theoretical
assumptions of the Merton’s model, such as the definition of L/distance-to-default with
regard to empirical default, data representativeness, and the normal distribution of log
returns, and apply to all three estimation methods, the difference in the estimation of PD

8Different asset value process is assumed, i. e. Lévy process.
9Hillegeist et al. (2004) stipulates that a negative µA is inconsistent with asset pricing theory. There is

no limitation on the µA in this paper.



The Merton Structural Model and IRB Compliance 49

or assignment resulting from the use of µA or r relates to the different estimation methods
of the model. Banks must demonstrate, insofar as they will use a calibration method, that
it produces accurate estimates of PD or obligor ratings despite the use of r.

5 Data
Analysis of the performance of the three aforementioned methods was conducted on sim-
ulated and empirical data of Slovenian companies in SBI20. Simulation is used to imitate
a real situation, i.e. the movement of market value of equity, and to derive general con-
clusions of the performance of used methods when estimating PD and assigning obligor
grades. The empirical data is used to clearly present implementation and performance of
mentioned methods on empirical data in general, and on Slovenian companies in particu-
lar, since to the author’s knowledge this is the first attempt of estimating PDs with Merton
(1974) model for Slovenian companies.

5.1 Simulated data
Simulated data were generated with the following properties. There were 5,000 sim-
ulations made of the geometric Brownian motion of daily market value of equity Et,
t = (0, . . . , 250), with (2.3) and the following conditions:

• the parameter µE was set at 0.036, and the value obtained was divided by 250 for
adjustment to the daily value;

• the parameter σE was randomly uniformly sampled in the interval between 0.1 and
1.0, and the value obtained was divided by

√
250 for adjustment to the daily value;

• E0 was always 1.0;

• the face value of debt L was defined as follows: since the market value of debt Dt

plus the put option (Pt) on the company’s assets equals the discounted face value of
debt L by the risk-free rate, L was

L =
E250(D250 + P250)

%

1− (D250 + P250)%
er.

In this paper the percentage (D250 + P250)
% was randomly uniformly sampled in

the interval between 0.1 and 0.8.

5.2 Empirical data: Selected companies from the SBI20
The empirical data consisted of the market values of equity (shares) of companies listed
on the Ljubljana Stock Exchange, and included in the SBI20 index, that had audited or
unaudited consolidated balance sheets for 31 December 2005. These were Krka, Mer-
cator, Petrol, Gorenje, Pivovarna Lako, Sava, Luka Koper, Intereuropa, Istrabenz, and
Aerodrom Ljubljana. This decision was supported by the fact that these are the shares
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that are most heavily traded (daily) on the exchange, and the movement of their prices
therefore approximates the movement of share prices on larger stock exchanges. In the
Merton theoretical context this means that trading in equity proceeds uninterrupted. The
time series of data from which At, µA, and σA were estimated, estimates of PD being
made from these, encompasses all trading days in 2004 and 2005 (n = 505 days and no.
of years = 2).

6 Results
In this section the results are presented, separately for simulated and empirical data.

6.1 Simulated data
The relevant parameters were estimated on the basis of the simulated data using the meth-
ods described above for all 5,000 fictitious obligors. For each obligor a Kolmogorov-
Smirnov test was conducted to verify the presumption of a normal distribution of returns
on their assets. There was only one obligor in the simulated data whose distribution dif-
fered significantly from the normal at 95 % confidence level. The described statistics (see
Table 1) show that there are significant differences between the parameters estimated with
the calibration method and the parameters estimated with the other two methods, under
the given conditions of the simulation. The largest difference can be observed in the es-
timation of PD, where PDs from the calibration method are on the average one-third of
the value of PDs estimated with MKMV or MLE methods. While the latter two produce
estimates of PD in the interval of 0 to 100 %, PDs in the calibration method ranges be-
tween 0 % and 30 %. On average σA estimated with calibration method is 6 % lower than
if estimated with other two methods. Standard errors of µA are identical to σA for a one
year period, which is consistent with (3.5). Note that calibration method cannot produce
the estimates of µA and standard errors of either µA or σA. The results imply the different
level of calibration or accuracy in the estimates of PD between the methods, which ceteris
paribus would generate differences in risk-weighted exposure amounts.

In accordance with the definition in paragraph4 of Part 4 of Annex VII of the CRD,
PD values calculated in this manner can be treated as credit ratings in a continuous rating
scale, i.e. as ratings arranging obligors in terms of credit worthiness from best to worst.
A Kendall τb (see Newson, 2001) correlation was used to verify if the Merton’s model
estimation methods are concordant or disconcordant in terms of assigning obligors grades.
The correlation analysis shows that the MKMV and MLE methods indicates a perfect
positive ordinal relationship in the assignment of obligor grades (a correlation of 1.0),
while the correlation between PD from MKMV or MLE and calibration method is equal
to 0.65, also indicating a strong positive ordinal relationship, although not a perfect one.
The latter implies different obligor grades assigned to the same obligors with calibration
method or MKMV/MLE.
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Table 1: Estimation of parameters on the basis of the simulated data.∗

parameter estimation method mean s.d. minimum maximum

A250 calibration 2.202 1.919 0.067 42.786
MKMV 2.199 1.930 0.067 43.705
MLE 2.199 1.930 0.067 43.707

µA MKMV -0.019 0.389 -2.395 1.901
MLE -0.020 0.389 -2.400 1.896

σA calibration 0.313 0.193 0.023 0.940
MKMV 0.333 0.208 0.021 0.993
MLE 0.331 0.207 0.021 0.989

s.e.(µA) MKMV 0.333 0.208 0.021 0.993
MLE 0.331 0.207 0.021 0.989

s.e.(σA) MKMV 0.235 0.147 0.015 0.702
MLE 0.234 0.146 0.015 0.697

PD calibration 3.229 5.241 0.000 30.261
MKMV 10.270 20.276 0.000 99.528
MLE 10.239 20.273 0.000 99.539

∗ In the first column estimated parameters are listed: A250 is the market value of assets in t = 250; µA and
σA are the drift and the standard deviation, respectively, of natural logarithms of asset returns, with their

standard errors s.e.(µA) and s.e.(σA); PD is the estimate of probability of default in %. Estimation
methods are listed in the second column, where standard errors of µA and σA under the MKMV method

are estimated with (3.5) and (3.6), respectively. For PD estimates, r is used for calibration method and µA

for other two methods in (2.8). In all other columns the statistics are presented.

In order to analyse the influences on differences in estimates of PD, a simple linear
regression analysis was conducted (see Table 2). The estimated parameters Â, σ̂A, µ̂A, PD
etc. were treated as random variables for this purpose with n = 5000 observations. The
normalization of the variables was used to equalize the measurement scales and to fullfill
the presumption of the normal distribution. The dependent variable was the normalized
absolute difference in the estimates of PD between MKMV and calibration method, de-
noted |PDMKMV − PDcal|. The inclusion of explanatory variables was partially based
on observations of Crosbie and Bohn (2003), who stipulates that (3.1) holds only instan-
taneously, and that the market leverage is too volatile to provide accurate estimates of
σA. They found bias in PD estimates when sharp increase/decline of leverage is noticed.
Following these observations, two explanatory variables were included:

• the normalized volatility of leverage in the time series, denoted σD/A, and estimated
as
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σD/A =

√
1

n

∑(
Dt/At −D/A

)2

,

D/A =
1

n

n∑
t=0

(Dt/At) ;

• the normalized absolute difference between the initial and final leverages, i.e. the
leverage in t = 0 and t = 250, denoted |D0/A0 −D250/A250|;

In addition, the following variables were included:

• the normalized standard deviation of the natural logarithms of equity returns, de-
noted σE , since this is the main driver of both asset and leverage volatility;

• the normalized absolute difference between drift estimated with MKMV method
and risk-free interest rate, denoted |µA − r|, based on the arguments in subsection
4.4;

• the normalized leverage in t = 250, denoted D250/A250;

Table 2: Influences on differences in estimates of PD.∗

variables β t sig. tolerance

σD/A 0.186 17.041 0.000 0.252

|D0

A0
− D250

A250
| 0.209 18.964 0.000 0.246

σE 0.467 56.508 0.000 0.440

|µA − r| 0.164 15.413 0.000 0.265

D250/A250 0.274 38.700 0.000 0.600

∗n=5000, r2 = .85, the dependant variable is |PDMKMV − PDcal|, β are standardized regression
coefficients, t is the value from t distribution, sig. is statistical significance of β, and tolerance is the

variance of the variable that is not explained by others in the model.

In this simple model the explained variance is 0.85, and all βs are positive and signif-
icantly different from zero. The main driver of the differencies in PD estimates between
MKMV/MLE and calibration methods is the standard deviaton of natural logarithm of
equity returns, followed by the leverage in t = 250. This means that the larger values
of these quantities generate larger differencies in PD estimates. Under the given setting
of the simulation, the result of the regression analysis on the simulated data is intuitive,
and in general confirms the findings of other authors that the calibration method does not
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satisfactorily take into consideration the dynamics of market value of equity in combina-
tion with the dynamics of leverage in the time series. It is worth emphasizing that there
is considerable correlation among the explanatory variables, indicated by the variance in
individual variables that is not explained by the other variables in the model (tolerance).

The results on the simulated data show that in the context of the IRB approach it is
possible to determine both the level of difference in the assignment of obligors to the
obligor rating scale (Kendall’s τb) and also the different calibration (or accuracy) of direct
estimates of PD between the calibration method and the MKMV/MLE methods.

6.2 Empirical data
Table 3 (in the Appendix I) illustrates the values that served for the estimation of the
relevant parameters and the estimated parameters at the final day of 2005. Kolmogorov-
Smirnov test reveals that the presumption of the normal distribution of natural logarithms
of returns on assets could be rejected for all companies at 95 % confidence level. The
estimates of the parameters confirm the findings on the simulated data. The differences
are observed mainly in the estimates of PD, while the estimates of the other parameters are
similar regardless of the estimation method. The reason for the similarity in the estimated
parameters is low volatility of the market value of assets and leverage, as indicated by the
regression analysis.

Table 3 shows that the one-year PD, which is also a requirement of the CRD, is smaller
than 0.03 % for all companies. This percentage is the minimum possible PD for compa-
nies under the CRD, despite the estimation including the total book liabilities. Part of the
reason for the extremely low PD could be found in the distributions of returns, which are
not normal. Distributions have greater density in the tails, but a comparatively thinner tail
in the normal distribution cannot describe this. Crosbie and Bohn (2003) also cite this
fact, adding that a distance-to-default of 4 standard deviations, on the basis of mapping to
empirical data on defaults, entails a PD of 1 %, while the theoretical PD from the normal
distribution is practically zero. Such effect is not analyzed in this paper.

7 Conclusion
The use of the traditional 1974 Merton structural model for calculating PD in light of
the minimum requirements of the IRB approach was illustrated in this paper. Differences
in the estimates of PD made using three estimation methods were analyzed, namely the
calibration method, the MKMV method, and the MLE method. The results are based
on simulated data and on empirical data from certain Slovenian companies in the SBI20.
The structural model is not directly useful for estimating PD for the purpose of calculating
capital requirements in the IRB approach until the estimates have been calibrated using
empirical data on defaults. And conversely, only when the data on defaults for listed
companies is available and back-testing has been facilitated can such models be used in
the IRB approach. The empirical data on defaults is used to eliminate the deficiencies in
the model such as the simple debt structure and the assumption of the normal distribution
of natural logarithms of returns on assets. In addition, in the IRB approach the minimum
requirements outside the model must also be fulfilled. These are the definitions of default,
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which must be in accordance with the definition in the CRD, the representativeness of the
data based on which L or the distance-to-default is (potentially) calibrated, a sufficient
time series of data and, not least, sufficient predictive ability and discriminatory power.

The results also indicate that differences in the estimated PD values can be the re-
sult of the estimation methods. Differences in estimated PD were observed between the
calibration method and the MKMV/MLE methods. The calibration method is deficient
in two aspects. The first is that, as a result of the estimation of σA at a single point of
time, the calibration method does not take into consideration sufficient equity volatility in
combination with the dynamics of leverage in the time series from which it is estimated
by both the MKMV and the MLE methods. The second deficiency is correlated with the
first, and relates to drift µA, which the calibration method does not estimate, the risk-free
interest rate r (commonly) being used instead.

As illustrated in the paper, the stipulated minimum requirements of the CRD can be
relaxed if the model is being used to assign obligors to an obligor rating scale. Several
pieces of research confirm that the Merton’s model has good discriminatory power. Vas-
salou and Xing (2004) state that the PD from the Merton’s model is actually a default
likelihood indicator, and not a direct measure of PD. Bharath and Shumway (2008) show
that there is high correlation between the credit ratings by Moodys and the estimates of
PD as estimated in their paper based on the Merton’s model. This is an indication of
the potentially satisfactory discriminatory power of the Merton’s model, which is one of
the key items for the acceptance of assignment methods by supervisors (see for exam-
ple Guidelines for Validation, 2006). However, there are differences in assignment as a
result of the different estimation methods. The Kendall τb correlation shows deviation
from a perfect positive ordinal relation in assigning obligor grades between calibration
and MKMV/MLE methods, when the rating scale is highly granulated. In evaluating rat-
ing systems and/or methods for estimating PD, the final and most important criterion is
discriminatory power and/or predictive ability (shown via back-testing). It is therefore
vital that there is empirical, valid and correctly defined data on defaults, irrespective of
the model or the mechanical method of assignment and/or estimation.
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