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Clustering of Population Pyramids using Mallows’
L2 Distance

Katarina Košmelj1 and Lynne Billard2

Abstract

In many real situations, data are collected/presented as histograms. Such exam-
ples are population pyramids, which present the age distribution of a population by
gender for a particular country. The objective of this paper is to partition countries
into homogenous groups according to the similarity of the shape of the population
pyramids in each particular year and to observe the time-trend. We use a Mallows’
L2 distance for this purpose. A case study on East European countries in the period
1995-2015 is presented. The results reflect that the countries are becoming more and
more similar and follow a pattern of aging populations. For the majority of countries,
this process started long before 1990, for Kosovo, Albania and Macedonia it started
after 1990.

1 Introduction
Often data come presented as histograms. Such examples are population pyramids which
present the age distribution of a population by gender. Each age-variable is presented
in the form of a histogram, the two gender histograms are plotted horizontally back-to-
back, on the left for males and on the right for females. On the y-axis are age groups: the
subintervals are usually five-year age groups; on the x-axis is the number of males/females
or the corresponding proportion.

As an example, we shall consider data from the US Census Bureau for 14 Eastern
European countries (EE) in the years 1995, 2000, 2005, 2010 and the ”predicted data”
for the year 2015 (http://www.census.gov/ipc/www/idb/informationGateway.php). The
14 EE countries are: Albania (AL), Bosnia and Herzegovina (BA), Bulgaria (BG), Czeck
Republic (CZ), Croatia (HR), Hungary (HU), Kosovo (KO), Montenegro (ME), Macedo-
nia (MK), Poland (PL), Romania (RO), Serbia (RS), Slovenia (SI), Slovakia (SK). These
countries were chosen because very turbulent and dynamic changes were taking place in
this region after the breakdown of the Eastern block in 1989 which changes were also
revealed in their demographic status.

For illustration, population pyramids for Kosovo and Slovenia in 1995 are presented
in Figure 1. For Kosovo a pyramid shape is apparent, indicating a high proportion of
children and a low proportion of older people, thus high birth rate and high death rate and
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Figure 1: Population pyramid for Kosovo 1995 (left) and Slovenia 1995 (right).

Figure 2: Population pyramid for Kosovo 2010 (left) and Slovenia 2010 (right).
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a short life expectancy (i.e., ”expansive” pyramid). The Slovenia pyramid reveals low
birth rate, a low death rate and a long life expectancy with more females than males in the
older age groups (i.e., ”constrictive” pyramid).

In Figure 2, the population pyramids for the same two countries are presented for the
year 2010. There are evident changes in their shapes. For Kosovo, each of the youngest
age-cohort is smaller than the previous one, however the pyramid for Slovenia demon-
strates a rapidly aging population with similar numbers of people in the youngest age-
cohorts (Vertot, 2011).

The objective of this paper is to partition these 14 countries into homogenous groups
according to the similarity of the shape of the population pyramids in each particular
year and to observe the time-trend. Cluster analysis will be undertaken; therefore, an
appropriate distance measure to meet this objective is needed. Countries described by
population pyramids can be regarded as symbolic data objects (Billard and Diday, 2006)
with two random variables, one presenting age for males and one for females. In the lit-
erature, several distances for histogram-type data can be found. Irpino and Verde (2006)
proposed a new ”Wasserstein based” distance (it is more correctly called Mallows’ L2

distance). Verde and Irpino (2007) analyzed different metrics in the dynamic clustering
of histogram data. Korenjak-Černe et al. (2008) used Euclidean distance to cluster pop-
ulation pyramids. From the symbolic data setting, several distances for histograms are
presented by Kim and Billard (2011). These distances are extended versions of Gowda-
Diday, Ichino-Yaguchi, and De Carvalho distances for interval type data.

We have decided to apply the Mallows’ L2 distance for clustering of population pyra-
mids for several reasons. As presented further on, this distance allows the constructions
of a barycentric histogram which is an ”optimal” cluster representative. It also allows
to define a measure of total inertia which can be decomposed into the within and be-
tween inertia according to the Huygens theorem (we present the proof in the Appendix).
Consequently, clustering results for different years can be compared and the time-trend
assessed.

2 Methods

2.1 Wasserstein’s distance and Mallows’ distance

If F and G are the distribution functions of two random variables f and g, and F−1 and
G−1 the corresponding quantile functions, the Wasserstein distance is defined as follows:

dW (f, g) =

∫ ∞
−∞
|F (t)−G(t)|dt =

∫ 1

0

|F−1(t)−G−1(t)|dt. (2.1)

Mallows’ L2 distance (1972) is defined as follows:

d2M(f, g) =

∫ 1

0

(F−1(t)−G−1(t))2dt. (2.2)
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This distance can be considered as a natural extension of the Euclidean distance from
point data to distribution data. More generally, Mallows’ distance is an Lp distance de-
fined for p = [1,∞], with p = 2 as in (2.2) being a special case. An interesting review
of its properies is given in Levina and Bickel (2002). Historically, these distances were
invented several times from different perspectives and can be found under different names
(see review in Rüschendorf, 2001).

2.2 Mallows’ L2 distance for histograms
The histogram description Y (u) of the object u is defined by Hu consecutive and non-
overlapping intervals Ihu = [y

hu
, yhu), h = 1, ..., Hu, with the relative frequency πhu as

follows:

Y (u) = {(I1u, π1u), ..., (Ihu, πhu), ..., (IHuu, πHuu)}. (2.3)

A cumulative relative frequency whu is associated with each interval: whu =
∑h

j=1 πju,
h = 1, ..., Hu. Assuming a uniform density for each interval Ihu, we may describe the
empirical distribution function and its inverse as piecewise linear functions:

Ψu(y) = wh−1,u +
whu − wh−1,u

yhu − yhu
(y − y

hu
), y

hu
≤ y < yhu, (2.4)

Ψ−1u (t) = y
hu

+
yhu − yhu

whu − wh−1,u
(t− wh−1,u), wh−1,u ≤ t < whu. (2.5)

In this context, the Mallows’ L2 distance (2.2) between the histograms of the objects u
and v is written as follows:

d2M(Y (u), Y (v)) =

∫ 1

0

(Ψ−1u (t)−Ψ−1v (t))2dt. (2.6)

In order to derive the Mallows’ L2 distance for the histogram setting, we follow the
procedure proposed by Irpino and Verde (2006). The cumulative relative frequencies for
Y (u) and Y (v) are set together : {w1u, ..., wHuu, w1v, ..., wHvv}. A zero value is added,
then these values are sorted without repetitions and put in the vector w having m+ 1 dif-
ferent components, w = [w0 = 0, w1, ..., wl, ..., wm = 1] . Using subintervals [wl−1, wl] ,
l = 1, ...,m, we can decompose (2.6) into the following sum:

d2M(Y (u), Y (v)) =
m∑
l=1

∫ wl

wl−1

(Ψ−1u (t)−Ψ−1v (t))2dt. (2.7)

Each interval [wl−1, wl], l = 1, ...,m, defines two uniformly dense quantile-intervals on
the abscissa axis: IQlu and IQlv, for object u and v, respectively. They are obtained as
follows:

IQlk = [Ψ−1k (wl−1),Ψ
−1
k (wl)], k = u, v. (2.8)
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By considering each point in a quantile-interval as a function of the interval center c,
c = (a+ b)/2, and interval radius r, r = (b− a)/2: IQ[a, b]⇔ IQ(z) = c+ r(2z − 1)
for 0 ≤ z ≤ 1, expression (2.7) can be simplified. Final integration gives the following
formula:

d2M(Y (u), Y (v)) =
m∑
l=1

π∗l [(clu − clv)2 +
1

3
(rlu − rlv)2] (2.9)

where π∗l = wl − wl−1. Given p histogram variables, expression (2.9) is generalized
assuming variables are independent:

d2M(Y (u), Y (v)) =

p∑
k=1

m∑
l=1

π
∗(k)
l [(c

(k)
lu − c

(k)
lv )2 +

1

3
(r

(k)
lu − r

(k)
lv )2]. (2.10)

When the variables are dependent, a Mahalanobis type of this distance should be used
(Verde and Irpino, 2008).

This distance has several useful properties in the histogram setting: it is easily calcula-
ble, it works also for subintervals of different sizes. Moreover, it allows for identification
of the barycentric (centroid) histogram. Let mn define the number of distinct values in
the vector w defined by the n histogram objects, as described above. The corresponding
barycentric histogram Y (b) can be expressed in terms of a vector of mn pairs (clb, rlb),
l = 1, ...,mn:

clb = n−1
n∑

i=1

cli, rlb = n−1
n∑

i=1

rli (2.11)

as follows:

Y (b) = {([c1b − r1b; c1b + r1b], π1); ...; ([cmnb − rmnb; cmnb + rmnb], πmn)}. (2.12)

2.2.1 Illustration

Let us consider two histograms, Y (A) = {([0, 10); 0.6), [10, 20); 0.2), [20, 30); 0.2)} and
Y (B) = {([0, 10); 0.2), [10, 20); 0.6), [20, 30); 0.2)}, having common subintervals. There
are five distinct values defining the vector w : w = [0, 0.2, 0.6, 0.8, 1]. The quantile inter-
vals for histograms A and B obtained from the subintervals [0, 0.2], [0.2, 0.6], [0.6, 0.8]
and [0.8, 1] are given in Table 1. The lower and upper bounds of the quantile intervals
are calculated from Ψ−1 ; these two values define its center and radius. The last column
presents the distance component of (2.9) which takes into account π∗. The distance be-
tween histograms is the sum of the components; d2M = 23.71. Figure 3 illustrates the
procedure graphically. The distribution function for the histogram A in given in blue and
for the histogram B in red. Below the x-axis, the quantile intervals for A are given in blue
and those for B in red.

Details for the calculation of the barycentric histogram are given in Table 2. The
vector w defines four quantile intervals. For each barycenter quantile interval, the center
is calculated as the average of the centers of the quantile intervals for A and B, and in the
same way the radius is calculated; these two components determine the quantile interval
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Table 1: Quantile intervals (lower bound, upper bound, center, radius) for histograms A and
B defined by the vector w . The last column present the distance component which takes

into account the weights π∗.The distance between histograms is d2M = 23.71.

Quantile intervals for A Quantile intervals for B Distance
w interval π∗ lower upper center radius lower upper center radius component
[0,0.2] 0.2 0.00 3.33 1.67 1.67 0.00 10.00 5.00 5.00 2.96
[0.2,0.6] 0.4 3.33 10.00 6.67 3.33 10.00 16.67 13.33 3.33 17.78
[0.6,0.8] 0.2 10.00 20.00 15.00 5.00 16.67 20.00 18.33 1.67 2.96
[0.8,1.0] 0.2 20.00 30.00 25.00 5.00 20.00 30.00 25.00 5.00 0.00

Figure 3: Distibution functions for A (in blue) and for B (in red) define the components of
vector w on the y-axis. Quantile intervals are presented below the x-axis: for histogram A in

blue and for histogram B in red. The dashed line presents the barycentric distribution
function (in green). Barycentric quantile intervals are presented below the x-axis (in green).
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Table 2: Quantile intervals for the barycentric histogram: center and radius are calculated
from the center and radius of the quantile intervals for A and B, these two components

determine the lower and the upper bounds.

w interval w π∗ center radius lower upper
[0,0.2] 0.2 0.2 3.33 3.33 0.00 6.67
[0.2,0.6] 0.6 0.4 10.00 3.33 6.67 13.33
[0.6,0.8] 0.8 0.2 16.67 3.33 13.33 20.00
[0.8,1.0] 1.0 0.2 25.00 5.00 20.00 30.00
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Figure 4: Histograms A and B and their barycentric histogram with the same subintervals as
histograms A and B have.

lower and upper bounds. In Figure 3, the barycentric quantile intervals are presented in
green below the x-axis, the barycentric distribution function is added as well (in green).

In Figure 4, histograms A (in red) and B (in blue) are shown. On the right, the barycen-
tric histogram with the same subintervals as histograms A and B have is presented (in
green); the subintervals’ relative frequencies were obtained using linear interpolation (see
green dotted line in Figure 3). In this case, the barycentric histogram is just the ”average”
of the original histograms A and B. A similar illustration is presented in Arroyo et al.
(2011). The authors present the Mallows’ and the Wasserstein’s barycenter for two his-
tograms. Notice the Mallows’ barycentric histogram is an average of the position, range
and shape of the corresponding histograms.

2.3 Inertia

Let us assume we have a partition of n histograms intoK clusters, PK = {C1, C2, ..., CK}.
In the cluster Ck, there are nk histograms, Ck = {Yk(1), ..., Yk(u), ...Yk(unk)}. The Mal-
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lows’ L2 distance allows us to define a measure of total inertia TI using the notion of the
global barycentric histogram Y (b):

TI =
K∑
k=1

nk∑
u=1

d2M(Yk(u), Y (b)). (2.13)

The TI can be decomposed into within inertia WI and between inertia BI according to
the Huygens theorem:

TI = WI +BI (2.14)

where the within inertia WI and between inertia BI are defined as follows:

WI =
K∑
k=1

nk∑
u=1

d2M(Yk(u), Y (bk)) (2.15)

BI =
K∑
k=1

nkd
2
M(Y (bk), Y (b)). (2.16)

In (2.15) and (2.16), Y (bk) denotes the barycenter of the cluster Ck. Proof of (2.14) is
given in the Appendix; it holds also for the multivariate case.

It can be shown that the inertia of the union of two disjoint clusters Cs and Ct is
computed as follows:

TI(Cs ∪ Ct) = TI(Cs) + TI(Ct) +
ns · nt

ns + nt

d2M(Y (bs), Y (bt)). (2.17)

The last term of (2.17) is recognized as Ward’s distance between the two clusters Cs and
Ct. Since d2M is a form of Euclidean distance, it can be used with Ward hierarchical
clustering method (Batagelj, 1988); dynamic clustering procedure can be used as well
(Irpino et al., 2006; Verde and Irpino, 2007).

3 Results
Countries described by population pyramids can be regarded as symbolic data objects
(Billard and Diday, 2006) with two random variables, one presenting age for males and
one for females; for simplicity, we shall assume these two variables are independent.
The objective of our study is to partition the 14 EE countries into homogenous groups
according to the similarity of the shape of their population pyramids in each particular
year. Ward’s agglomerative clustering method based on the Mallows’ distance presented
in (2.10) was used. Summary results are presented in Table 3.

The dendrogram for 1995 is in Figure 5a). It shows that the 14 countries are clustered
into two clusters on the first level: Cluster 1 contains Albania (AL) and Kosovo (KO),
while the remaining 12 countries are in the second cluster. The second cluster splits into
two clusters; Cluster 2 has 5 countries: Bosnia and Herzegovina (BA), Macedonia (MK),
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Table 3: Total inertia TI , Between inertia BI and Within inertia WI for the obtained
partitions in 1995, 2000, 2005, 2010 and 2015 (in bold). For each cluster, the following
information is given: identification, members, size, cluster Between inertia and Within

inertia contribution.

Year Cluster id Cluster members Size TI BI WI

1995 448.78 411.15 37.63
1 AL KO 2 283.00 9.52
2 BG CZ HR HU RO RS SI 7 121.89 18.66
3 BA ME MK PL SK 5 6.29 9.45

2000 422.29 387.82 34.48
1 AL KO 2 266.53 8.95
2 BG CZ HR HU RS SI 6 118.82 7.45
3 BA ME MK PL RO SK 6 2.46 8.08

2005 394.63 356.34 38.29
1 AL KO 2 256.06 14.03
2 BG CZ HR HU RS SI 6 99.32 5.68
3 BA ME MK PL RO SK 6 0.96 18.58

2010 362.20 337.64 24.56
1 KO 1 190.61 0.00
2 AL MK 2 62.70 11.91
3 BG CZ HR HU RS SI 6 81.34 5.26
4 BA ME PL RO SK 5 2.98 7.39

2015 342.22 321.19 21.02
1 KO 1 190.55 0.00
2 AL MK 2 55.17 8.73
3 BA BG CZ HR HU RS SI 7 73.65 8.29
4 ME PL RO SK 4 1.83 4.01

Montenegro (ME), Poland (PL) and Slovakia (SK). In Cluster 3, there are the remaining 7
countries: Bolgaria (BG), Czech Republic (CZ), Croatia (HR), Hungary (HU), Romania
(RO), Serbia (RS) and Slovenia (SI). Figure 5b), c) and d) present the barycentric his-
tograms for Cluster 1, 2 and 3, respectively. The shape of the barycentric pyramid for
Cluster 1 is expansive; for the other two clusters, it is constrictive. Table 3 shows that
the total inertia equals 448.78, the between inertia 411.15 and the within inertia 37.63.
Cluster 1 and Cluster 3 are similarly homogenous: their within inertia contribution is 9.52
and 9.45, respectively. However, the barycenter of Cluster 3 is the nearest to the global
barycenter, since its between inertia contribution is the lowest (6.26).

Results for the years 2000 and 2005 are the same as the results for 1995 except that
RO is moved from Cluster 2 to Cluster 3. However, total inertia decreased from 448.78
in 1995 to 422.29 in 2000 and to 394.63 in 2005; similarly, the between inertia decreased
from 411.15 to 387.82 to 356.34.

The dendrogram for 2010 (see Figure 6a)) reflects a substantial change: MK is moved
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a) b)

c) d)

Figure 5: a) Dendrogram for the 14 East European countries for 1995 obtained by Ward’s
method; b) barycentric histograms for Cluster 1 (AL, KO); c) barycentric histograms for

Cluster 2 (BG, CZ, HR, HU, RO, RS and SI; and d) barycentric histogram for Cluster 3 (BA,
ME, MK, PL, SK).
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a) b)

c) d)

Figure 6: a) Dendrogram for the 14 East European countries for 2010 obtained by Ward’s
method; b) barycentric histograms for Cluster 2 (AL, MK); c) barycentric histograms for

Cluster 3 (BG, CZ, HR, HU, RS and SI; and d) barycentric histogram for Cluster 4 (BA, ME,
PL, RO, SK).
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Figure 7: Population pyramid for Albania 2010 (left) and Macedonia 2010 (right).

to the cluster with AL and KO, suggesting two subclusters: one consisting of KO and the
other of AL and MK. How many clusters are to be adopted? Total inertia is 362.20;
in the case of 3 clusters, it splits into Between inertia and Within inertia as follows:
362.20 = 309.37 + 52.82; in the case of 4 clusters, 362.20 =337.64 + 24.56. In order
to obtain the optimal number of clusters, the Calinski-Harabasz pseudo F-statistic for the
number of clusters k (Calinski and Harabasz, 1974) can be used:

CH(k) =
BI(k)/(k − 1)

WI(k)/(n− k)
(3.1)

with higher values of CH(k) preferred. In our case, CH(3) = 32.21, CH(4) = 45.282.
Therefore, the partition into 4 clusters was adopted. Cluster 1 consists of KO only, Cluster
2 of AL and MK, Cluster 3 of 6 countries: BG, CZ, HU, HR, RS and SI, and Cluster 4
of 5 countries: BA, ME, PL, RO and SK. The barycentric histograms for Cluster 2, 3 and
4 are presented in Figure 6 b), c) and d), respectively. The KO pyramid is changing from
an expansive shape (Figure 1 left) to a constrictive shape (see Figure 2 left).The shape of
the barycentric pyramid for AL and MK can be better understood as the average of the
population pyramids of Figure 7: for the younger age cohorts (age 0-20) each age group
consists of a smaller proportion than for the previous group; but the AL pyramid has a part
of its population in the age groups 20-40 years which is missing (presumably because of
migrations). Cluster 3 and Cluster 4 have similar constrictive shapes. They are similarly
homogenous (their within inertia contributions are 5.26 and 7.39, respectively).

The results for 2015 are based on the predicted data and are given in Table 3. They
are similar to the results for 2010, except that BA is moved from Cluster 4 to Cluster 3.
The tendency of decreasing inertia remains.

To sum up: the results reflect demographic changes in this short time-interval. In gen-
eral, we observe a pattern of aging populations: a decline in the number of births and an
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increase in the number of elderly persons. For the majority of countries considered in the
dataset, this has been going on long before 1990 and their pyramids reflect a constrictive
shape within the observed period. For KO, AL and MK, this process started after 1990.
The results reflect that the countries are becoming more and more similar and follow a
pattern of aging populations.

4 Conclusion
We chose to use the Mallows’ L2 distance to cluster the population pyramids according
to the similarity of their shapes. Its calculation is simple, even when the number and
length of histograms’ subintervals may differ. However, two assumptions are taken into
account in its derivation for the histogram setting: the distribution within each histogram-
subinterval is uniform, the variables presenting age for males and females are indepen-
dent. The first assumption is a standard one when histograms are under consideration.
On the other hand, age for males and females is dependent and ignoring this dependency
presents a simplification. The results we obtained are satisfactory - countries with similar
shapes of the pyramids were successfully detected for each year under the analysis. The
global and the local barycentric histograms offer a deeper understanding of the yearly
results. Additional insight into the results can be obtained from the total inertia and its
decomposition into the within and between inertia; in such a way the time-trend can be
assessed as well.
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14 Katarina Košmelj and Lynne Billard

[7] Kim, J. and Billard, L. (2011): Dissimilarity measures for histogram-valued obser-
vations. Communications in Statistics: Theory and Methods, in press.
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A Appendix
We can represent the histogram Yk(u) in the cluster Ck, u = 1, ..., nk, k = 1, ..., K, by
the quantile-interval centers and radii (see Section 2.1) as

Yk(u) = {([cl,ku − rl,ku; cl,ku + rl,ku], πl,ku), l = 1, ...,mk}. (A.1)

The center and the radius for the l-th quantile-interval of the barycentric histogram for the
cluster Ck is calculated as follows:

cl,bk = n−1k

nk∑
u=1

cl,ku, rl,bk = n−1k

nk∑
u=1

rl,ku; (A.2)

similarly, for the global barycentric histogram:

clb = n−1
K∑
k=1

nk∑
u=1

cl,ku, rlb = n−1
K∑
k=1

nk∑
u=1

rl,ku (A.3)

where n =
∑K

k=1 nk. Then from (2.13) and (2.9), TI is expressed as follows:

TI =
K∑
k=1

nk∑
u=1

d2M(Yk(u), Y (b)) =
K∑
k=1

nk∑
u=1

mn∑
l=1

π∗l [(cl,ku − clb)2 +
1

3
(rl,ku − rlb)2].
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Hence, we can write

TI =
K∑
k=1

nk∑
u=1

mn∑
l=1

π∗l [(cl,ku − cl,bk + cl,bk − clb)2 +
1

3
(rl,ku − rl,bk + rl,bk − rlb)2]

=
K∑
k=1

nk∑
u=1

mn∑
l=1

π∗l [((cl,ku − cl,bk)2 + (cl,bk − clb)2 +
1

3
(rl,ku − rl,bk)2 + (rl,bk − rl,b)2]

(A.4)

since the two cross-product terms become zero:
∑nk

u=1(cl,ku−cl,bk) = nkcl,bk−nkcl,bk = 0;
and similarly for the radii. Hence, the expression for TI can be rewritten as follows:

TI = WI +BI (A.5)

where WI and BI are as follows:

WI =
K∑
k=1

nk∑
u=1

mn∑
l=1

π∗l [(cl,ku − cl,bk)2 +
1

3
(rl,ku − rl,bk)2] =

K∑
k=1

nk∑
u=1

d2M(Yk(u), Y (bk)),

(A.6)

BI =
K∑
k=1

mn∑
l=1

π∗l nk[(cl,bk − clb)2 +
1

3
(rl,bk − rlb)2] =

K∑
k=1

nkd
2
M(Y (bk), Y (b)). (A.7)

Hence, the result (2.14) follows.


