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Impact of Class-Imbalance on Multi-Class
High-Dimensional Class Prediction

Rok Blagus and Lara Lusa1

Abstract

The goal of multi-class supervised classification is to develop a rule that accu-
rately predicts the class membership of new samples when the number of classes is
larger than two. In this paper we consider high-dimensional class-imbalanced data:
the number of variables greatly exceeds the number of samples and the number of
samples in each class is not equal. We focus on Friedman’s one-versus-one approach
for three-class problems and show how its class probabilities depend on the class
probabilities from the binary classification sub-problems. We further explore its per-
formance using diagonal linear discriminant analysis (DLDA) as a base classifier and
compare its performance with multi-class DLDA, using simulated and real data.
Our results show that the class-imbalance has a significant effect on the classifica-
tion results: the classification is biased towards the majority class as in the two-class
problems and the problem is magnified when the number of variables is large. The
amount of the bias depends also, jointly, on the magnitude of the differences be-
tween the classes and on the sample size: the bias diminishes when the difference
between the classes is larger or the sample size is increased. Also variable selection
plays an important role in the class-imbalance problem and the most effective strat-
egy depends on the type of differences that exist between classes. DLDA seems to be
among the least sensible classifiers to class-imbalance and its use is recommended
also for multi-class problems. Whenever possible the experiments should be planned
using balanced data in order to avoid the class-imbalance problem.

1 Introduction
The goal of many studies is to develop a rule (classifier) that can be used to reliably
predict the class membership of new samples based on some of their observable char-
acteristics (variables). The process used to derive a classifier is called class prediction
(Bishop, 2007): the variables available on a set of samples for which the class member-
ship is known (training set) are combined to derive the classifier, which is eventually used
to predict the class of new samples (test set). Increasingly often the number of variables
available for each sample is large, sometimes exceeding the number of samples included
in the training set: if this is the case the data are called high-dimensional and special care
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is needed in the development and validation of the performance of the classifier. For ex-
ample, gene expression microarrays (Brown and Botstein, 1999) measure simultaneously
the expression of tens of thousands of genes for each sample, while the number of sam-
ples included in a study rarely exceeds a few hundreds: many studies tried to predict the
outcome of diseases using the gene-expression data derived from microarrays.

Another source of complexity that is increasingly acknowledged in the class predic-
tion studies is the imbalance in the number of samples from each class included in the
training set (class-imbalance problem, He and Garcia, 2009); the classifiers trained on
class-imbalanced data tend to classify most of the new samples in the majority class. For
class prediction problems involving two classes it was recently shown that the bias to-
wards the majority class is further increased when data are high-dimensional (Blagus and
Lusa, 2010). The high-dimensionality affects each classifier in a slightly different way
but in most cases the additional bias arises because the sampling variability is larger in
the minority class, and extreme values are likely to arise when thousands of variables are
measured. Diagonal linear discriminant analysis (DLDA) was the least sensitive classifier
to class-imbalance among those considered by Blagus and Lusa (2010). Its performance
was further improved if used in combination with undersampling techniques, which use
smaller but balanced training sets; the variability of the results was reduced by multiple
undersampling, a method that combines many small balanced training sets sampled from
the original training set.

Often the number of classes to predict is larger than two (multi-class classification,
Tsoumakas and Katakis, 2007). Some two-class classifiers cannot be straightforwardly
extended to deal with more than two classes; for example, the standard SVM classifiers
are formulated for only two classes. For this reason many approaches were proposed to
deal with multi-class class-prediction as a series of binary class-prediction sub-problems
(Allwein et al., 2001; Dietterich and Bakiri, 1995; Friedman, 1996; Hastie and Tibshirani,
1998): the two main approaches are the one-versus-rest strategy (the binary sub-problems
consist in comparing one class with all the others) and one-versus-one strategy (all pairs of
classes are compared). The one-versus-one strategies have larger variability but are less
affected by class imbalance compared to one-versus-rest strategies, as they use smaller
but less imbalanced training sets. Moreover, the one-versus-rest strategies usually do not
work because they produce regions that do not belong to any of the classes (Izenman,
2008).

The multi-class problems are common also in the high-dimensional setting where the
number of classes is generally limited. For example, Hedenfalk et al. (2001) tried to
distinguish three types of primary breast cancers (sporadic, with BRCA1 or with BRCA2
mutation) based on their gene-expression. Sotiriou et al. (2006) combined the data from
previously published studies and analyzed the gene-expression data from breast cancer
patients with histologic tumor grade 1 (n = 167), 2 (n = 218) or 3 (n = 256).

Some previous studies addressed the problem of multi-class classification using high-
dimensional gene expression data (Berrar et al., 2003; Romualdi et al., 2003; Statnikov
et al., 2005). For example, using nine multi-class gene expression data sets, Statnikov
et al. (2005) compared the performance of nine multi-class classifiers (six multi-class
support vector machine (MC-SVM) algorithms, K-nearest neighbors (k-NN), backpropa-
gation neural networks and probabilistic neural networks) and showed that the MC-SVM
performed better than the other three classifiers. The majority class of their most imbal-
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anced multi-class data set included 68.5% of the samples; however, their work did not
focus explicitly on the class-imbalance problem.

The aim of our study was to investigate how class imbalance affects the multi-class
classification for high-dimensional class-imbalanced data, a problem that to our knowl-
edge has not been systematically addressed so far. We focused mainly on DLDA because
of its good behavior in the two-class problems with high-dimensional class-imbalanced
data; another reason for choosing DLDA was the straightforward generalization of the
two-class DLDA to the multi-class situation (multi-class DLDA, mDLDA). We com-
pared mDLDA and the Friedman’s one-versus-one approach (1996), which breaks down
the multi-class problem in a series of two-class classification problems and assigns new
samples to the class having most votes. Friedman’s approach was chosen because of its
wide applicability and simplicity, and because it was previously indicated as beneficial
when the classes are imbalanced or when the number of classes is large (Speed, 2003).
We chose a one-versus-one rather than a one-versus-all strategy because we expected that
it would be less affected by class-imbalance.

The two approaches were evaluated both on simulated data and on four publicly avail-
able data sets from breast cancer gene expression microarray studies (Huang et al., 2003;
Ivshina et al., 2006; Miller et al., 2005; Pittman et al., 2004; Sotiriou et al., 2003); we
assessed both the overall and the class specific predictive accuracies. We simulated data
where there was no difference between the classes (null case) and three scenarios where
the classes were different (alternative case). We evaluated if random undersampling could
reduce the bias arising from the class-imbalance also in the multi-class classification.

The paper is organized as follows. In the Methods section we briefly describe the
classification approaches and the strategies to deal with the class-imbalance problem that
we used; we also describe the simulations that were performed and the gene expression
microarray data sets used in our analyses. In the Results section we outline the expected
properties of the multi-class classifier in the null case and show the actual performance of
the methods on simulated and real data. In the Discussion we summarize the results and
outline the problems related to multi-class classification for high-dimensional data.

2 Methods

In Section 2.1 we describe the notation used in the paper, the classifiers that were used,
focusing on mDLDA, on the Friedman’s approach to multi-class prediction using two-
class DLDA and on the random undersampling method that was used to reduce the class
imbalance problem; we also describe how we selected the variables that were used in the
classification rule and the measures used to evaluate the performance of the classifiers. In
Section 2.2 we describe the simulation settings for the null and the alternative case. In
Section 2.3 we briefly present the microarray data sets that we used and the multi-class
classification problems that we addressed.
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2.1 Class prediction methods
2.1.1 Notation

Through the paper we indicate the number of samples with n, the number of variables with
p and the number of variables selected and used in the classification rule with G, these
variables are the most informative about class distinction; K is the number of classes
while the class membership of the samples is indicated with integers from 1 to K; the
classes are non-overlapping and each sample belongs to exactly one class, the number of
samples in Class k is denoted by nk.

Let xij be the expression of jth variable (j = 1, ..., p) on ith sample (i = 1, ..., n).
For sample i we denote the set of G selected variables by xi. Let x̄(k)

g denote the mean
expression of the gth selected variable in Class k. The mean expression of the gth variable
in Class k is defined as

x̄(k)
g = 1

nk

∑
i∈Ck

xig, (2.1)

and let x∗ represent the set of selected variables for a new sample.

2.1.2 Multi-class DLDA

Discriminant analysis methods are used to find linear combination of variables that maxi-
mize the between-class variance and at the same time minimize the within-class variance
(Simon et al., 2004; Speed, 2003). Diagonal linear discriminant analysis (DLDA) is a
special case of discriminant analysis that assumes that the variables are independent and
have the same variance in all classes.

The multi-class DLDA (mDLDA) classification rule for a new sample x∗ is linear and
is defined as

C(x) = argmink

G∑
g=1

(
x∗g − x̄(k)

g

)2

s2
g

, (2.2)

where s2
g is the sample estimate of the pooled variance for variable g and x∗g is the gth

selected variable of the new sample. The two-class DLDA is a special case of mDLDA.

2.1.3 Friedman’s approach

In Friedman’s approach, also known as the win-max rule, the class-prediction problem
for K > 2 classes is divided in

(
K
2

)
binary class-prediction problem, one for all pairs of

classes. Within each binary class-prediction problem we build a rule for class-prediction
(train a classifier) and a new sample is classified in one of the two classes. The final
class-prediction in one of the K classes is defined with majority voting, assigning the
new sample to the class with most votes.

The motivation for the Friedman’s approach lies in the fact that a multi-class Bayes
decision rule can be obtained by separately constructing an optimal rule for discriminating
between every pair of classes, ignoring the samples from the other classes (Friedman,
1996). Friedman’s approach considers only the class-membership when deciding for the
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final classification of the new samples. The probabilities of belonging to a certain class
rather than the class membership derived from the binary sub-problems could also be
considered (Hastie and Tibshirani, 1998).

It can be shown that Friedman’s approach and multi-class linear discriminant analysis
yield to exactly the same classification results if the within-class variances of the vari-
ables are the same in all the classes; however, when the assumption of equal within-class
variances is violated the results obtained using the two methods can be slightly different,
as the estimate pooled variances depend on the pairs of classes being compared and can
differ substantially from the estimate obtained using all the classes, as in mDLDA. Also
the variable selection method used to reduce the number of variables can be different from
the method used for mDLDA. See section 2.1.5 for details.

2.1.4 Simple undersampling

Simple undersampling (down-sizing) consists of obtaining a class-balanced training set by
removing a subset of randomly selected samples from the larger class (Batista et al., 2004;
He and Garcia, 2009). In mDLDA undersampling consisted in using min(n1, n2, n3)
samples from each class, randomly selecting which samples from the majority class(es)
should be removed. With Friedman’s approach each pairwise comparison was undersam-
pled if the size of the classes was not equal (nk 6= nj). The classification rule was derived
on the balanced training set as described for the original data, and evaluated on the test
set.

In our reanalysis of the microarray data we repeated the process of random selection
of samples to be included in the class-balanced training set 100 times in order to reduce
the variability of the estimated predictive accuracy. In this case we report also the standard
deviation of the predictive accuracy.

2.1.5 Variable selection

The G < p variables that were most informative about class distinction were selected on
the training set and used to define the classification rules (Eq. 2.2). Variable selection was
based on two sample t-test with assumed equal variances for the Friedman’s approach, or
F-test for the equality of more than two means for mDLDA. A limited set of simulations
and real data analysis were carried out using the F-test with Friedman’s approach. We
selected G = 40 variables in most cases; G = 30 variables were selected in the third
alternative scenario, see below. Note that when using Friedman’s approach a different set
of variables could be used for the training of each binary classifier.

In the null case we also considered the situation where all the variables were used
(G = p). We carried out also a limited set of simulations where the variables used with
the Friedman’s approach were selected with the F-test using all the classes.

To reduce the computational burden in the reanalysis of the breast cancer gene-expression
data sets we considered only the p = 1000 variables with the largest variances. The vari-
able selection consisted in selecting on each training set the G = 40 variables with the
smallest p-values, as described for the simulated data.



30 Rok Blagus and Lara Lusa

2.1.6 Evaluation of the performance of the classifiers

The performance of the classifiers was evaluated on the independent test sets. It is well
known that for imbalanced data the proportion of correctly classified samples can be a
misleading measure of the performance of a classifier (Pepe, 2003, chapter 2). For this
reason four different measures of performance were considered: (i) overall predictive
accuracy (PA, the number of correctly classified subjects from the test set divided by the
total number of subjects in the test set), (ii) predictive accuracy of Class 1 (PA1, i.e., PA
evaluated using only samples from Class 1), (iii) predictive accuracy of Class 2 (PA2 i.e.,
PA evaluated using only samples from Class 2) and (iii) predictive accuracy of Class 3
(PA3). Their standard deviations were also reported. When we reanalyzed the real gene
expression data the predictive accuracies (overall and class-specific) were estimated using
leave-one-out cross-validation (LOOCV).

2.2 Data simulation

We simulated p = 40 or 1000 independent variables for each of the ntrain = 90 samples
in the training set and ntest = 300 samples of the test set, considering three classes.

Class 1 was always assumed to be the majority class, while classes 2 and 3 were
smaller and balanced (n1 ≥ n2 = n3); four different levels of class imbalance were
considered (n1 (%) = 30 (33.3%), 36 (40%), 40 (44.4%) or 60 (66.7%)) in the training
sets, while the test set was always balanced. All the simulations were repeated 500 times.

Null case. Under the null case all the variables were simulated independently from the
standard normal distribution (mean µ = 0 and standard deviation σ = 1, N(0, 1)) and the
class membership of the samples was randomly assigned.

Alternative case. Under the alternative case the class membership was dependent on
some of the variables; for each sample p0 variables were generated independently from
N(0, 1) (null variables) for all classes, while the remaining variables (pDE , non-null or al-
ternative variables) were generated independently from a normal distribution with differ-
ent means between the classes (but with equal variances). Three different scenarios were
considered in the alternative case; pDE = 40 non-null variables were used in scenario 1
and 2, and pDE = 30 in scenario 3. In the first scenario there were no real differences be-
tween classes 2 and 3, while class 1 was different. In the second scenario the three classes
were all different, and class 1 was between classes 2 and 3: the differentially expressed
variables from class 1 were simulated using mean values that were between those from
class 2 and 3. In the third scenario all three classes were different but none of the classes
was placed between the others: the non-null variables were simulated from three different
normal distributions for each class. The variance of the variables was 1 for all variables.
The normal distributions from which the non-null variables were simulated in the three
scenarios are reported in Table 1. A graphical illustration of the three scenarios is also
given (figure 1, where larger sample sizes and differences between classes were used in
order to obtain a clearer graphical display).
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Table 1: Distributions from which the pDE differentially expressed variables were simulated
independently for the three scenarios under the alternative case.

pDE Class 1 Class 2 Class 3
Scenario 1 40 N(0,1) N(0.7,1) N(0.7,1)
Scenario 2 40 N(0,1) N(0.7,1) N(-0.7,1)
Scenario 3 10 N(-0.5,1) N(0,1) N(0.5,1)

10 N(0.5,1) N(-0.5,1) N(0,1)
10 N(0,1) N(0.5,1) N(-0.5,1)
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Figure 1: Illustration of different scenarios under the alternative hypothesis.

2.3 Microarray gene expression data sets

In this section we briefly describe the five breast cancer gene expression microarray data
sets that we re-analyzed; data were preprocessed as described in the original publica-
tions. The number of variables measured in the original studies, the classification task(s)
performed by us and the number of samples in each class are reported in table 2.

The performance of the mDLDA and Friedman’s approach was evaluated using leave-
one-out cross-validation (LOOCV). When undersampling was performed to balance the
training set, we used 100 balanced training sets. In the results we report the average
predictive accuracies (overall and class specific) and their standard deviation.

To speed up the calculations only the 1000 genes with the largest variability were
considered.

Sotiriou. Sotiriou et al. (2003) analyzed cDNA gene expression profiles from 99 tu-
mor specimens from breast cancer patients, measuring the gene expression of 7650 genes
(probes). The classification problem that we considered was the prediction of the histo-
logical grade of tumors; the data set included 16 grade 1 (G1), 38 grade 2 (G2) and 45
grade 3 (G3) patients.
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Table 2: Main characteristics of the five re-analyzed breast cancer data sets.

Data set Prediction task Variables Samples n1 n2 n3
Sotiriou Grade 1, 2 or 3 7650 99 16 38 45
Miller Grade 1, 2 or 3 22283 249 67 128 54
Ivshina Grade 1, 2 or 3 22283 289 68 166 55
Huang ER-, ER+/++ or ER+++ 12625 80 12 42 26
Huang ER-, ER+ or ER++/+++ 12625 80 12 24 44
Pittman ER-, ER+/++ or ER+++ 12625 158 48 74 36
Pittman ER-, ER+ or ER++/+++ 12625 158 48 40 70

Miller. Miller et al. (2005) derived a classifier to distinguish p53-mutant and wild-
type tumors using a series of 251 breast cancer patients, for which they measured the
expression of more than 20,000 genes. Also on this data set we focused on the prediction
of the grade of the tumors, using 67 G1, 128 G2 and 54 G3 patients.

Ivshina. Ivshina et al. (2006) developed a classifier of histologic grade using 347 pri-
mary breast cancer samples, training the classifiers using G1 and G3 samples only; they
measured the expression of more than 20,000 genes. We focused on the three class predic-
tion of histologic grade, using 68 G1, 166 G2 and 55 G3 samples. This data set included
all the samples analyzed by Miller et al. (2005) and 40 additional G2 samples.

Huang. Huang et al. (2003) used the expression of about 12,000 genes data as pre-
dictors of breast cancer outcomes. For our classification purposes we used the estrogen
receptor status (ER status), which was reported in the original data set using 4 categories:
ER- negative (ER-, n = 12), ER+ (slight intensity, n = 24), ER++ (moderate intensity,
n = 18) and ER+++ (strong intensity, n = 26). We considered two three-class classifi-
cation problems, merging the ER+ and ER++ groups for the first task, and the ER++ and
ER+++ groups for the second task.

Pittman. Pittman et al. (2004) expanded the cohort of Huang et al., including in their
study 78 additional patients. We performed the same two three-class prediction analyses
described for the data set of Huang, using 48 ER-, 40 ER+, 34 ER++ and 36 ER+++
samples.

2.4 Analysis
Statistical analysis and simulations were carried out using R language for statistical com-
puting (R version 2.8.1) (R Development Core Team, 2008).
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3 Results
In this section we first derive the class probabilities using Friedman’s approach in a
three-class problem. We then present the simulation results and the results obtained re-
analyzing the breast cancer microarray data sets.

3.1 Class probabilities using Friedman’s approach
We derive the class probabilities using Friedman’s approach as a function of the class
probabilities from the binary class-prediction sub-problems. For the sake of simplicity let
us consider a classification problem with K = 3 classes. The possible outcomes of the
three possible pairwise comparisons among the three classes are listed in table 3, where
the class assignments derived using Friedman’s approach are also given together with
the notation used to denote the probabilities of each outcome (the subscripts indicate the
winning class from each binary comparison). The class is chosen at random when each
of the three classes receives a vote. In practice, in a three class problem most classifiers
have 0 or close to 0 probabilities of having ties (one vote for each class, verified with the
simulation - data not shown).

Table 3: Outcomes of the binary class-prediction sub-problems, class assignments and
probabilities using Friedman’s approach.

Vote
1 vs 2 1 vs 3 2 vs 3

1 1 2
1 1 3
1 3 2
1 3 3
2 1 2
2 1 3
2 3 2
2 3 3

Probability

p112
p113
p132
p133
p212
p213
p232
p233

Class assignment

Class 1
Class 1

Class 1, 2 or 3
Class 3
Class 2

Class 1, 2 or 3
Class 2
Class 3

The probabilities of assigning a new sample to each of the classes are (see table 3 for
the definition of pijk)

P (C = 1) = p112 + p113 + 1
3 (p213 + p132) ,

P (C = 2) = p221 + p223 + 1
3 (p213 + p132) ,

P (C = 3) = p133 + p233 + 1
3 (p213 + p132) .

Let us assume that in each pairwise comparison the new samples are equally likely to
be assigned to both classes. In this case all the outcomes listed in the table are equally
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likely and it is therefore straightforward to show that the Friedman’s approach would
assign the new samples to each class with equal probability: P (C = 1) = P (C = 2) =
P (C = 3) = 1/3. This behavior would be expected when there are no true differences
between classes in the training set (null case).

However, it is well known that when the classes are imbalanced the binary classifi-
cation is biased towards the majority class for most classification methods, even in the
null case (He and Garcia, 2009); the bias deriving from the binary classification steps is
therefore carried over to the Freedman’s approach.

To evaluate the extent of the bias in a practical situation let us consider a three class
classification problem where there is no real difference between the classes and p = 40
variables are measured and used for classification; most samples belong to Class 1, while
Class 2 and Class 3 are equally sized and are four times smaller (80% class-imbalance,
n1 = 60, n2 = n3 = 15, data are simulated from N(0,1) for all variables). We previously
derived the probability of classifying a new sample in Class 1 in a binary problem for sev-
eral classifiers in this settings (Blagus and Lusa, 2010); the probabilities for 3-NN, DLDA,
random forests (RF) and SVM are reported in table 4 (binary sub-problems); using the
formulae derived above we evaluated the class probabilities obtained using Friedman’s
approach (table 4, Friedman). The results show that the bias towards the majority class
remains in the multi-class classification as well, and that the class probabilities of the mi-
nority classes become smaller if compared to those from the binary sub-problems. DLDA
is the least sensitive to the class-imbalance problem. The consistency of these results
was confirmed also using simulated data. Very similar results were obtained simulating
correlated variables (data not shown).

Table 4: Class probabilities using binary sub-problems and Friedman’s approach
(p = 40, n1 = 60, n2 = 15, n3 = 15, all variables simulated independently from N(0,1)).

Classifier

3-NN
DLDA
RF
SVM

Binary sub-problems
(1 vs 2) (1 vs 3) (2 vs 3)

P (C = 1) P (C = 1) P (C = 2)
0.89 0.89 0.50
0.70 0.70 0.50

1 1 0.50
0.96 0.96 0.50

Friedman

P (C = 1) P (C = 2) P (C = 3)
0.82 0.09 0.09
0.56 0.22 0.22

1 0 0
0.93 0.03 0.03

3.2 Simulation results
In this section we present the results of a selected group of simulations where we in-
vestigated the performance of mDLDA and DLDA with the Friedman’s approach, both
assuming no real difference between classes (null case) or simulating differences between
classes (alternative case). The focus was on the effect of dimensionality of the data and
the class-imbalance; the sample size was kept fixed while the proportion of samples in
the majority class varied from 1/3 (balanced situation) to 2/3 (most imbalanced situation).
When the number of variables was large some additional attention was devoted to the
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effect of variable selection. We present the results obtained using the original versions of
the classifiers and using undersampling. The results are discussed focusing on the class-
specific predictive accuracies. See the Methods section for the details on the simulation
settings.

3.2.1 Null case

In the first set of simulations there were no differences between classes, as all the vari-
ables were simulated independently from the same distribution. Results are represented
graphically in figure 2.
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Figure 2: Null case results: class specific predictive accuracies (in %) and their standard
deviations (vertical lines), using DLDA with Friedman’s approach and mDLDA, varying the
number of variables (simulated (p) and used (G)) and the size of the majority class (n1); the

second row shows the results obtained with random undersampling.

When the number of simulated variables was small (p = 40) and the training set was
balanced (n1 = n2 = n3 = 30) both DLDA with Friedman’s approach and mDLDA
randomly assigned approximately one third of the new samples to each class (PAk ≈
1/3). When the number of samples from the majority class (Class 1) increased, both
methods assigned more new samples to the majority class; as expected, the number of
samples assigned to the other two balanced minority classes was approximately equal
in all the situations and there was hardly any difference between Friedman’s DLDA and
mDLDA. For example, in our most imbalanced setting (n1 = 60, n2 = n3 = 15), the PA
for both methods was about 52% for the majority class and about 24% for the other two
classes.
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The bias towards the majority class increased with the number of simulated variables:
the PA of the minority classes became poorer as more samples were classified in the
majority class and the bias increased with the class imbalance. Almost all new samples
were assigned to the majority class when we simulated and used p = G = 1000 variables
in our most imbalanced setting. mDLDA and Friedman’s DLDA performed very similarly
also when the number of variables was large, while the two methods differed when only
the variables that differentiated the most between the classes were used (p = 1000, G =
40). Variable selection reduced the bias towards the majority class, more substantially for
mDLDA: the PA1 decreased from 99% to 75% for mDLDA and to 83% for Friedman’s
DLDA in the most imbalanced setting. The difference between the two methods can be
ascribed to the different variable selection methods. mDLDA selects the variables that
differentiate the most the three classes (with the F test), while in our implementation
of Friedman’s DLDA we selected the variables that differentiated the most the pairs of
classes (with t-tests); therefore, different variables could be selected for each of the binary
sub-problem. We ran an additional set of simulations using Friedman’s DLDA, where the
variables selected with F test were used in all the binary problems; the results in this case
were almost identical to those obtained with mDLDA (data not shown).

Undersampling. We used simple undersampling with the aim to remove or reduce the
bias towards the classification into the majority class in the null case. All the classifiers
were trained on class-balanced data (see Methods for details).

In this simulation settings simple undersampling completely removed the bias caused
by the class-imbalance: the new samples were randomly assigned to the three classes,
regardless of the class-imbalance of the original training set. Selecting only a subset of
the samples from the majority class removed the internal bias of DLDA as it ensured
that the sampling variability in each class was the same. The expected drawback was the
larger variability of the PA in the situations where the original class imbalance was large;
the reason is the smaller size of the training set. For example, in our most imbalanced
setting we used only half of the training samples, removing 45 samples from the majority
class. Note however that variable selection needs to be implemented after undersampling
as otherwise the results remain biased in favor of the majority class (data not shown).

3.2.2 Alternative case

We further explored the effect of class imbalance and high-dimensionality of the data in
situations where some of the variables were different between the classes. Specifically,
we explored three different scenarios: there was no difference between the two minority
classes, while the majority class was different (scenario 1), all the classes were different,
with the majority class nested between the two minority classes (scenario 2) or with no
nesting between the classes (scenario 3). Results are represented graphically in figure 3.

The three scenarios produced very different results. The way in which data were
simulated in scenario 3 guaranteed that the class specific PA were equal in the balanced
setting, as none of the classes was more difficult to predict compared to the others. Class 1
was the easiest to predict in scenario 1 (because there was no difference between classes
2 and 3) while it was the most difficult to predict in scenario 2 (because it was nested
between the two other classes, while the two minority classes were well separated).
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Figure 3: Alternative case results: class specific predictive accuracies (in %) and their
standard deviations (vertical lines), using DLDA with Friedman’s approach and mDLDA,
varying the number of variables (simulated (p) and used (G)) and the size of the majority

class (n1); the second row shows the results obtained with random undersampling.

In most situations the majority class had the largest class specific PA, which markedly
increased with class imbalance. For example, when we used Friedman’s DLDA in sce-
nario 3 the majority class PA increased from 89% (balanced setting) to 97% (most im-
balanced setting), while the PA of the minority classes decreased from 89% to 73%. In
scenario 3 mDLDA performed worse than Friedman’s DLDA, obtaining class specific PA
that were on average about 10% points smaller than those from Friedman’s DLDA.

In scenario 2 the class 1 was the most difficult to predict in the balanced setting,
nevertheless it had the best class specific PA when the class imbalance was large. In this
scenario mDLDA performed better than Friedman’s DLDA, the differences being more
marked in the most imbalanced setting: the PA of the minority classes was about 25%
points better with mDLDA (87% vs 62%), while the PA of the majority class was about
the same (96%) using both methods.

The performance of mDLDA and Friedman’s DLDA was very similar in scenario 1.
The PA of the minority classes were smaller compared to the PA of the majority class
and were below 50%. This was due to the fact that in this scenario there were no real
differences between the minority classes. We carried out a limited set of simulations
for the class-balanced situation where we increased the difference between the majority
and minority classes in this setting and we observed that as the PA of the majority class
approached 100%, the PA of the other two classes approached 50% (data not shown).
Also in this setting the class imbalance increased the discrepancy between the PA of the
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majority and minority classes. For example, in the most imbalanced situation (n1 = 60,
n2 = n3 = 15) Friedman’s DLDA achieved 97% PA for the majority class and 38% PA
for the minority classes, while the PA were respectively 86% and 48% in the balanced
situation.

Also in the alternative case the discrepancies between Friedman’s DLDA and mDLDA
could be attributed to the different variable selection methods that were used: the same
results were obtained if both methods used the F-test to select the variables, similarly as
described for the null case (data not shown). The pairwise t-tests outperformed the F-test
in scenario 3, while they performed worse than F-test in scenario 2, and comparably to
F-test in scenario 1. The reason for these differences can be ascribed to the statistical
power of the two variable selection methods (evaluated using simulated data, data now
shown). In scenario 1 the power was approximately the same for both methods, while F-
test had a larger overall power in scenario 2 and 3. The best performance of the pairwise
t-tests in scenario 3 can be explained focusing the subset of variables that had the largest
differences between a pair of classes. For example, the first set of variables reported in
table 1 for scenario 3 are those that have the biggest difference between class 1 and 3.
The pairwise t-test had better power than F-test in selecting this type of variables and
for this reason the pairwise classifiers included more of the variables that had (real) large
differences between the pairs of classes, achieving better PA.

Undersampling. We used simple undersampling for the three alternative case scenar-
ios. We showed in the previous section that the alternative case results varied greatly,
depending on the simulated scenario and on the classification method that we used; un-
dersampling results depended on the scenario and on the classification method as well. A
general remark is that our simulations showed that by undersampling we could achieve
results that were very similar to those obtainable using balanced data, in any given setting.
Comparing the results obtained in the balanced setting with those of the most imbalanced
(undersampled) setting in figure 3 we observe that similar patterns emerge. For example,
class 1 had the best PA for in scenario 1 and the worst PA in scenario 2, while the class-
specific PA were equal in scenario 3. The results obtained using undersampled training
set had worse PA for the majority class and larger variability in the PA, because a smaller
number of samples was used, mostly at the expense of the majority class.

Nevertheless, undersampling had the effect of balancing to some extent the class spe-
cific PA, improving the minority class PA and decreasing the majority class PA. This can
be observed comparing the results that were obtained using undersampling in the most
imbalanced setting with those obtained in the same setting without any correction. For
example, using Friedman’s DLDA in scenario 3 all three classes had 80% PA using un-
dersampling, while the discrepancy in PA between majority and minority class without
undersampling was 25% points. In scenario 2, the majority class PA decreased from 96%
to 63%, while the minority class PA increased from 62% to 78%; in this scenario it is
expected that the PA of the majority class is smaller than the PA of the other classes. In
scenario 1 undersampling removed most of the bias towards the majority class but did not
improve considerably the PA of the minority classes; this limited improvement could be
expected because in scenario 1 there is no real difference between the minority classes,
for which we expect at most a 50% PA.
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4 Re-analysis of public microarray data sets
Five different breast cancer gene expression data sets were reanalyzed, with the aim of
developing classifiers for the prediction of ER status and grade of the tumors. All the
classification problems involved three classes; the sample size varied from 80 to almost
300 samples, the percentage of samples from the minority class varied from 15% to 25%,
while the majority class included about a half of the samples (range: 44% to 57%, table
2). The Miller data set is a subset of the Ivshina data set, where additional 40 G2 samples
where included in the analysis and the class label of two samples was changed. In the
same way, the Huang data set is a subset of the Pittman data set, which included twice as
many samples as the Huang data set, and had a smaller class-imbalance (30% ER- instead
of 15%). See the Methods section for details on the variable selection and undersampling.

The prediction of the ER status in two classes is known to be an easy classification
task, as thousands of genes distinguish the ER negative from ER positive samples. It
is less clear if it is possible to develop a classifier that accurately distinguishes the in-
tensity of ER expression; for instance, separating patients with slight or moderate ER
intensity from those with strong intensity of ER. The prediction of the grade of the tumor
is considered a hard classification task, as few genes distinguish G2 patients from G1 or
G3 patients, while the differences between G1 and G3 are more marked: the G2 group
comprises about a half of the patients and it is considered a heterogeneous group.

In all data sets the predictive accuracy for Grade 2 class was poor, even though it was
the majority class in the Miller and Ivshina data sets (table 5). Friedman’s DLDA and
mDLDA performed very similarly in the grade prediction; Friedman’s DLDA performed
slightly better on the minority classes in the Miller data set and overall in the Ivshina
data set. Undersampling did not worsen the performance of the classifiers, slightly im-
proving the PA of the minority classes in some situations, and leaving the G2 PA more
or less unaffected (see for example Miller data set using mDLDA). Comparison between
the results on the Ivshina data set and the Miller data set showed that increasing the num-
ber of samples in the majority class (G2) somehow increased the overall performance
of the classifiers, obtaining an overall better performance with Friedman’s DLDA, while
improving only the minority classes PA with mDLDA.

A better overall PA was obtained for the three-class ER status prediction. The Huang
data set was small and had the largest class-imbalance; the classification results were
poor in the first classification task (joining ER+ and ER++ samples), and slightly better
in the second classification task (joining ER++ and ER+++ samples). Friedman’s DLDA
performed better than mDLDA; moreover, undersampling substantially improved the PA
of the minority classes while the decrease of the PA of the majority class was small for
the first classification task, and larger for the second one. In the Pittman data set the
sample size was larger and the class-imbalance smaller. The PA of the ER- (minority)
class substantially increased for both classification tasks; undersampling did not improve
the performance as substantially as for the Huang data set, and seemed more helpful in
improving the performance for mDLDA.

The main differences between the results obtained using Friedman’s DLDA and mDLDA
could be ascribed to the two different methods used to perform the variable selection.
However, unlike the results obtained with the simulated data, using F-test with Fried-
man’s DLDA did not yield exactly the same results as mDLDA (data not shown). This
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difference can be explained by the fact that the within-class variances can be different in
the real data, therefore the estimates of the pooled variances can differ considerably when
estimated using all three classes or only the pairs of classes. Also, Friedman’s approach
coupled with undersampling uses more samples in the training of the classifier, compared
to the undersampled mDLDA, which reduces all the classes to the size of the smallest
class.

Table 5: Re-analysis of breast cancer gene expression data: overall and class specific
predictive accuracies (PA, in % (SD)) for different approaches (Friedman’s DLDA,

multi-class DLDA, with our without undersampling (US) the training set) on five different
data sets. The PA are estimated using leave-one-out cross validation.

Grade Sotiriou Miller Ivshina

(nk)
Friedman’s DLDA
mDLDA
Friedman’s DLDA with US
(SD)
mDLDA with US
(SD)

PA PA1 PA2 PA3
(99) (16) (38) (45)
46.5 43.8 26.3 64.4
49.5 62.5 23.7 66.7
44.0 60.8 22.1 56.7
(3.1) (9.1) (5.2) (4.0)
45.8 58.1 31.3 53.7
(3.3) (7.5) (5.9) (4.9)

PA PA1 PA2 PA3
(249) (67) (128) (54)
55.8 70.1 40.6 74.1
56.2 68.7 44.5 68.5
56.6 71.7 39.4 78.9
(1.4) (3.0) (2.1) (2.0)
56.7 72.5 39.0 79.3
(1.0) (1.9) (1.6) (1.7)

PA PA1 PA2 PA3
(286) (68) (166) (55)
59.5 76.5 45.8 80.0
55.4 76.5 38.6 80.0
59.0 78.0 43.6 81.8
(1.4) (3.0) (2.2) (2.2)
57.0 76.1 41.3 80.9
(1.2) (2.3) (1.9) (1.8)

ER-, ER+/++, ER+++ Huang Pittman

(nk)
Friedman’s DLDA
mDLDA
Friedman’s DLDA with US
(SD)
mDLDA with US
(SD)

PA PA1 PA2 PA3
(80) (12) (42) (26)
46.3 50.0 42.9 50.0
40.0 33.3 38.1 46.2
49.4 79.2 35.8 57.6
(3.9) (6.2) (5.2) (6.8)
48.5 76.6 40.9 48.0
(3.9) (6.1) (6.1) (8.0)

PA PA1 PA2 PA3
(158) (48) (74) (36)
67.1 83.3 40.0 71.4
62.7 72.9 45.0 65.7
68.4 84.1 45.9 70.4
(1.3) (1.3) (3.7) (2.5)
68.0 81.6 42.7 73.0
(1.3) (1.4) (3.4) (1.8)

ER-, ER+, ER++/+++ Huang Pittman

(nk)
Friedman’s DLDA
mDLDA
Friedman’s DLDA with US
(SD)
mDLDA with US
(SD)

PA PA1 PA2 PA3
(80) (12) (24) (44)
56.3 50.0 33.3 70.5
52.5 41.7 29.2 68.2
54.1 65.7 33.2 62.3
(3.5) (9.3) (5.6) (4.5)
53.7 66.0 37.7 59.1
(4.2) (8.8) (8.6) (5.6)

PA PA1 PA2 PA3
(158) (48) (40) (70)
63.9 83.3 59.5 47.2
58.2 79.2 48.6 50.0
55.9 84.2 39.4 52.2
(2.4) (1.3) (4.1) (5.8)
55.4 84.2 35.9 57.4
(1.9) (1.2) (3.0) (4.9)

5 Discussion
It is recognized that multi-class classification tasks are generally significantly harder than
binary classification tasks (Mukherjee, 2003). In practice, the complexity of multi-class
classification problems is often further increased by the fact that some of the classes can
be considerably smaller than the others, i.e., by the class imbalance problem. The lack
of minority class data can be one source of additional difficulty in the class-imbalanced
problems. However, most of the commonly used classifiers have a built-in bias towards
the classification into the majority class, which can contribute substantially to the poor
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performance in the class-imbalanced setting. It was previously shown that for most clas-
sifiers this bias is further increased when the data are high-dimensional and/or if some
type of variable selection is performed (Blagus and Lusa, 2010).

In this paper we focused on class-imbalanced multi-class high-dimensional data, and
on the Friedman’s method, a one-versus-one approach that reduces the multi-class prob-
lem in a series of binary classification problems and assigns the samples to the class with
most votes. For the three-class classification problems we showed how the class proba-
bilities deriving from the Friedman’s approach are related to the class probabilities of the
binary class-prediction sub-problems: the classification bias towards the majority class
observed in the binary problems is carried over to the multi-class problem. Moreover, the
classifiers that are most sensitive to class-imbalance in the two-class problems are deemed
to be also the most sensitive in the multi-class setting when Friedman’s approach is used.
Another consequence is that also for multi-class problems the high-dimensionality of the
data increases the bias towards the classification in the majority class. We did not con-
sider any one-versus-all approaches because we expected that they would be even more
sensitive to class-imbalance because the binary classifiers would be trained on even more
imbalanced data.

A simple comparison of four classification methods (3-NN, DLDA, RF and SVM)
showed that DLDA was the least sensitive to class-imbalance also in the multi-class set-
ting when using the Friedman’s approach. We focused on DLDA and compared the results
obtained with Friedman’s approach with those derived from the straightforward general-
ization of DLDA to multi-class problems (mDLDA). In practice the two methods differ
in only two aspects: (i) the distance between the new data and the class centroids is stan-
dardized using a pooled variance of the variables, which is estimated using the data from
pairs of classes for the Friedman’s DLDA, while it is based on all the data for mDLDA
and (ii) the variable selection method can be different.

It is common practice to select the variables to include in a multi-class classifier based
on some statistic that compares all the classes at the same time; for example, we used
F-test to rank the variables for mDLDA. We decided to investigate Friedman’s approach
with variable selection based on pairwise class comparisons (pairwise t-tests), obtaining
a different ranking of the variables for each binary sub-problem. This approach mimics
more closely the procedure that would be used in a two-class problem. The other reason
for this choice was that we observed that mDLDA and Friedman’s DLDA obtained very
similar results if the same variable selection method was used; the similarity was more
striking in the simulations, while some differences were observed analyzing the real data.
The reason was that the estimates of the pooled variances sometimes differed substantially
if they were based on all classes rather than on pairs of classes. This problem did not arise
for the simulated data because the within-class variability was the same for all the classes.

The simulation results under the null case confirmed the general considerations out-
lined above. When the classes were imbalanced most new samples were classified in the
majority class and increasing the number of variables increased the bias towards the ma-
jority class; variable selection reduced the bias but did not remove it. Friedman’s DLDA
was more sensitive to class-imbalance when the variables were selected, as the use of the
pairwise t-tests was less effective in removing the bias compared to the F-test used with
mDLDA. The reason is that by using the pairwise t-tests we further increased the high-
dimensionality of the data, as the number of performed statistical tests was three times
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larger compared to mDLDA. It was therefore more likely that variables exhibiting spuri-
ous and large differences between the pairs of classes would be used. We expect that the
differences between the F-test and pairwise t-test results would be even more pronounced
if the number of classes was larger.

In multi-class problems the classes can differ in many ways, and this is the reason
why the alternative case results are more are complex to interpret compared to two-class
setting. For example, while it is possible that all the classes are different, it is also possible
that some of the classes cannot be discriminated using the measured variables, mixing
null and alternative case situations in the same classification problem. Furthermore, the
majority class can be either the easiest or the most difficult to predict, depending on
whether it exhibits the least or the most differences compared to the other classes. For
example, in our re-analysis of breast cancer gene-expression data the patients with grade
2 were the most abundant in two of the three data sets and grade 2 was the most difficult
class to predict. We tried to take some of these possibilities into account in our simulations
considering different scenarios, which by no means can be considered exhaustive of all
the possible situations that can arise in practice. It is therefore very difficult to make some
general conclusions about the effect of class-imbalance in multi-class problems when the
classes are different.

Our findings suggest that the class-imbalance reduced the predictive accuracy of the
minority classes and increased the probability of classifying new samples in the majority
class, similarly as it was observed in the null case. The variable selection method played
an important role. The statistical power for identifying the truly differentially expressed
variables was better for the F-test compared to the pairwise t-tests; the pairwise t-tests had
better power for the variables that distinguished the most the pairs of classes. However,
there was no clear winner between mDLDA and Friedman’s DLDA. In the three simu-
lation scenarios that we considered mDLDA performed similarly to Friedman’s DLDA
in scenario 1 (no difference between the minority classes), better in scenario 2 (major-
ity class nested between the minority classes) and worse in scenario 3 (no nesting of the
classes); in the real data analysis Friedman’s DLDA seemed to perform slightly better
than mDLDA.

In binary classification the bias in favor of the majority class can be attenuated with
simple random undersampling (Blagus and Lusa, 2010). Undersampling consists in ob-
taining a class-balanced training set by removing a subset of samples from the majority
class. Our results suggest that undersampling can attenuate the bias also in the multi-
class classification. In the alternative case the results obtained using undersampling were
similar to those obtainable using balanced data. Therefore, undersampling did not nec-
essarily balance the predictive accuracy of all the classes but it improved the minority
class predictive accuracy. In the analysis of real data undersampling did not worsen the
performance of the classifiers, and in some situations it improved the predictive accuracy
of the minority class. This is to some extent surprising, as a much smaller sample sizes
were used with undersampling. This result seems to support the view that it is important
to plan experiments using balanced data, whenever possible.

In our analysis we considered only DLDA as a base classifier. It is therefore possible
that other classification methods will be less sensitive to class imbalance. However, our
theoretical results and limited simulation results suggest that bias caused by the class-
imbalance will be even larger for other classifiers. Nevertheless it would be beneficial to
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compare different classifiers using simulated and real high-dimensional class-imbalanced
data, simulating also correlated variables. A further limitation of our study was that we
considered only random undersampling as an approach to reduce the bias. More efficient
methods exist in the literature; for example, we previously showed that multiple under-
sampling outperforms random undersampling (Blagus and Lusa, 2010) and it would be
interesting to compare different undersampling approaches also for multi-class classifica-
tion problems. Note however that on our analysis of the real data sets we repeated the
subset selection many times, which can be seen as a simplified form of multiple down-
sizing.

6 Conclusions
Our results show that the class-imbalance has a significant effect on the classification
results also in multi-class problems and that its influence is magnified when the number
of variables is large. The amount of bias depends also jointly on the magnitude of the
differences between classes and on the sample size, i.e. the bias diminishes when the
differences between the classes are larger or the sample size is increased. Also variable
selection plays an important role in the class-imbalance problem and the most effective
strategy depends on the type of differences that exist between classes. DLDA seems to be
among the least sensible classifiers to class-imbalance and its use is recommended also
for multi-class problems. Whenever possible the experiments should be planned using
balanced data in order to avoid the further complications arising from the class-imbalance.
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