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Statistical Forecasting of High-Way Traffic Jam 

at a Bottleneck 

Igor Grabec and Franc Švegl1 

Abstract 

Maintenance works on high-ways usually require installation of 

bottlenecks that disturb traffic. The article presents a new mathematical 

model for analysis and forecasting of traffic jam evolution in front of a 

bottleneck. The model is comprised of two partial differential equations for 

the mean velocity and density of cars. The first equation describes 

relaxation of velocity to its equilibrium value determined by a new 

fundamental diagram. The second is the continuity equation and describes 

adaptation of the density to the input traffic flow that is forecast 

statistically. Numerical treatment of the model yields distributions of traffic 

variables that exhibit characteristic properties of jam evolution. The 

performance of the method is demonstrated by forecasting the jam that 

would develop during rush-hour if a bottleneck were installed on a high-

way close to Ljubljana. Beside the model a new method is presented for 

approximate prediction of jam length based upon input flow and bottleneck 

capacity that is specified by the fundamental diagram. The corresponding 

computer programs represent a new tool by which experts can analyze 

properties of bottlenecks in order to optimize them.  

1  Introduction 

In the past year we have introduced a new approach to non-parametric statistical 

modeling and forecasting of traffic flow on the network of high-ways in Slovenia 

(Grabec and Švegl, 2010; Grabec et al., 2010a). Based upon the corresponding 

predictor we have developed an intelligent graphic user interface for forecasting of 

traffic flow rate that is now applied by our traffic information center at Ljubljana 

(Grabec et al., 2010b).  The goal of this article is to stretch applicability of this 

interface to forecasting of traffic congestions and jams caused by bottlenecks and 

other disturbances on high-ways. For this purpose forecast data about traffic flow 

rate have to be properly transformed into other traffic characteristics. Here we 

consider forecasting of the length of the traffic jam that 
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develops at the bottleneck due to reduced flow through it. With this aim we first 

present a new formulation of the fundamental diagram of traffic flow which 

provides for modeling of traffic dynamics at a bottleneck based upon forecast 

input flow. The applicability of the proposed model is demonstrated by an example 

of the bottleneck whose properties are characterized by a decreased allowed speed 

limit.  

2 Theoretical background 

Road traffic can be most thoroughly described by a set of dynamic rules that 

determine trajectories of particular cars (Helbing, 1997; Kerner, 2001; Treiber and 

Kesting, 2010). However, such micro-dynamical description is usually too 

complex for on-line applications in traffic information centers where more general 

properties of traffic are mainly sought. Consequently, we turn to a macroscopic 

description based upon just two variables that describe the mean density ρ and 

velocity v of cars (Kerner, 2001; Treiber and Kesting, 2010). The corresponding 

mean flow rate Q=ρv is here considered as the basic variable for the description 

and analysis of the traffic state at the bottleneck.  

In a simple case of a steady and homogeneous traffic state the variables ρ and v 

do not depend on position and time, but they are mutually related. The graph of the 

corresponding relation v=v(ρ) represents the first fundamental diagram of traffic 

(Helbing, 1997; Kerner, 2001; Treiber and Kesting, 2010; Siebel and Mauser, 

2005). By the expression Q=ρv(ρ) this diagram is transformed into the second 

diagram that represents the flow rate Q(ρ) as a function of the density  

There are generally three approaches used when specifying the fundamental 

diagram: empirical, micro-dynamic, and analytical one. In the first case some 

proper function is statistically adapted to measured data by an optimal selection of 

its free parameters. In the second case the basic relation v = v(ρ) is extracted from 

dynamic rules describing trajectories of particular cars, while in the last case this 

relation is derived based upon some general assumptions about the traffic 

properties. For our purpose we next follow this case and first consider quasi static 

and homogeneous free flow of vehicles on a high-way where the maximal allowed 

speed is given by the limit value vo. We assume that the corresponding traffic state 

is characterized by the density ρ that is determined by the distance between cars r 

as: ρ=1/r. We further assume that the most fundamental property of the traffic 

stems from the experience of drivers which adjust distance between cars so that it 

grows with their velocity. This property is most simply described by a linear 

relation: r = λ + τw    For our purpose it is better expressed by: w = (r – λ) / τ. Here 

λ denotes the mean length of cars, τ the reaction time, and w a characteristic 

velocity determined by the transition of the clear spacing between cars r – λ  in the 

reaction time τ. For the safety reasons, a driver tries to keep the velocity of the car 
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v bellow the characteristic value w, and also bellow the allowed limit vo. 

Consequently, the values w and vo can be considered as components of a composed 

constraint. In order to describe it we represent particular constraints by the inverse 

values 1/vo and 1/w and add them to get the following rule for velocity constraint : 

1/v = 1/vo + 1/w. This rule indicates that the value v cannot surpass neither vo nor 

w. However, one could expect that still better expression of composed constraint 

could be obtained if a proper weight is assigned to particular terms in the last rule. 

Such a weight should point out relative importance of one term with respect to 

another one, and consequently, it is enough if just one term is weighted. We 

arbitrary assign a weight to the last term and assume that its importance grows 

with the increasing density of cars that corresponds to the decreasing value of w. 

The weight is then expressed relatively with respect to some characteristic 

parameter u which should be determined experimentally. Based on this reasoning, 

the weight is expressed as u/w which yields the rule: 1/v = 1/vo + u/w
2
. Its more 

convenient form is given by the expression for the velocity:  

 

     (2.1) 

 

It is important that the characteristic value w depends on and 

consequently, the last equation describes the fundamental traffic law and 

the first fundamental diagram.  

In order to complete our description the parameter u has to be specified. Since 

its unit must coincide with the unit of velocity, we arbitrary put . 

Comparison of the rule Eq. (2.1) with the rules obtained from measured data 

(Helbing, 1997) has revealed that a good agreement is obtained if the proper value 

of constant is set to C = 3.1. Simultaneously with this estimation, the following 

values: λ = 4.4m and τ = 1.3s have been estimated as proper ones. Slightly worse 

model yields the values λ = 5m and τ = 1s that are more convenient for 

presentation of results obtained numerically. Figure 1 shows agreement between 

experimentally and theoretically determined fundamental diagram for the velocity 

in the case with the limit value vo=110km/h. Similarly, Figure 2 shows the 

corresponding second diagram for the flow rate Q(ρ). Experimental data are taken 

from the reference (Helbing, 1997) and correspond to a high-way with speed limit 

120km/h, that is decreased to the value 110km/h due to the presence of trucks.  
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Figure 1: Dependence of the velocity v on the density of cars ρ. Experimental data are 

taken from the reference (Helbing, 1997). 

 

 

Figure 2: Dependence of the traffic flow rate Q on the density of cars ρ. Experimental 

data are taken from the reference (Helbing, 1997). 

 

The limit value vo = 110km/h has been selected to render possible comparison 

with models of other authors (Helbing, 1997; Treiber and Kesting, 2010). In 

addition to this, the diagrams corresponding to the limit value vo = 55km/h are 

presented (--) in order to indicate the properties of the fundamental diagram 

corresponding to a typical bottleneck. The most important characteristic of the 

second diagram is given by the maximal value of the flow rate that determines the 

road capacity. In Slovenia the velocity limit on high-ways is vo = 130 km/h while 

most often observed limit in a bottleneck is vo = 60 km/h. For a single lane the 

corresponding capacities are Qmax 2.2*10
3
veh/h and Qmax 1.4*10

3
veh/h 

respectively. One could expect that the jam appears when the flow to a bottleneck 

reaches its capacity.    

The fundamental diagrams determined by our model coincide surprisingly well 

with the experimentally determined ones. This agreement indicates that reasoning 

at the formulation of the model, although rather simple, is consistent with 
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characteristic properties of the traffic flow in equilibrium and describes correctly 

the adaptation of the mean velocity of cars to the traffic density. 

In our derivation of the fundamental law Eq. (2.1) we considered quasi steady 

and homogeneous traffic state. However, this is not the case when treating 

congestion phenomena and evolution of traffic jams. Since the derived law Eq. 

(2.1) describes well the mean traffic properties in equilibrium, we further assume 

that the velocity at a certain position x and time t is adapted to the equilibrium 

value  determined by Eq. (2.1) during some characteristic adaptation time T 

(Treiber and Kesting, 2010; Siebel and Mauser, 2005). We describe this adaptation 

by the most simple differential equation: 

 

,      (2.2) 

 

and further consider the velocity and density as mutually dependent field 

variables  and . In accordance with this dv/dt in the 

differential Equation (2) denotes the convective derivative: . The 

fundamental dynamic law of the field is then given by the continuity equation  

(Siebel and Mauser, 2005): 

 

,      (2.3) 

 

in which  denotes the traffic source term. If we start analysis at a certain 

point xo where the traffic flow rate Q(t) is forecast, then the source term can be 

described by the expression:  in which δ denotes the 

Dirac’s delta function. 

The drivers try to adapt their velocity predominantly to the leading car, but 

with a delay specified by the reaction time . Consequently, when describing the 

adaptation of velocity v at the position x and time t, the density in Eq. (2.2) has to 

be taken at some position  ahead of x and at delayed time . A typical value 

of  is several lengths of the car: . Similarly the relaxation time is several 

reaction times: . 

The model equations (1-3) represent a non-linear system of partial differential 

equations that could not be solved analytically, and consequently, we have to apply 

numerical treatment. For this purpose it is convenient to introduce normalized 

non-dimensional variables by transitions: ;  ;  ; 

 ; . In this case the position is measured in terms of the car 

length and the time in terms of the reaction time. The solution of the system (1-3) 

can be found using standard numerical methods for treatment of partial differential  

equations. However, for this purpose initial and boundary conditions 

corresponding to a specific case must be given. A typical example is described in 

the next section.   
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3 Development of the traffic jam at a bottleneck 

In order to demonstrate the performance of the described model we consider the 

traffic flow at the high-way station near Ljubljana. Its position is shown by the 

cross section of vertical and horizontal lines in the top diagram of the forecasting 

unit window shown in Figure 3. The radius of the circle at a certain point indicates 

the amount of the flow rate at the selected time of forecasting. Its dependence on 

time in the selected day is shown by the bottom record. Two expressive peaks in 

this record denote increased population mobility during rush-hours in the morning 

and afternoon. Due to this property the recorded function can be simply modeled 

by superposition of two normal distributions and a constant, as shown in Figure 4. 

Such analytical model is convenient when characterizing human activity and 

mobility and was applied also in our further treatment (Grabec et al., 2010a). 

 

 

Figure 3: The window of intelligent graphic user interface for traffic flow forecasting. 

Top graph shows the distribution of predicted traffic flow rate Q(x) in Slovenia at the 

selected day of February 22, 2011, while the bottom one shows the dependence of Q(t) at 

the selected position denoted by the red circle (Grabec et al., 2010b). 
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Figure 4: Dependence of the predicted traffic flow rate Q(t) on time.  

 

 

 

Figure 5: Bottleneck characteristic for the transition from 130 to 60km/h.  

 

Our next goal is to demonstrate what would happen during selected day if a 

bottleneck is placed at the road section covering the selected point. For this 

purpose we consider a road section of 30km length with the bottleneck installed at 

25km. In the bottleneck the velocity limit is reduced from 130km/h on the free 

road to 60km/h. The distribution of velocity reduction factor B is shown by the 

characteristic in Figure 5. To solve the problem, we select the cell size in the 

spatial direction equal to 200m, and the time step equal to . We 

next consider homogeneous initial and boundary conditions equal to 0, so that the 

traffic state is completely determined by the incoming flow rate Q(t) as estimated 

by the forecasting module and shown in Figure 4. For the calculations we further 

consider the time interval that contains one arbitrary selected day. The calculated 

distributions of field variables are shown in Figs. 6a, b, and c using color coding 

for the amplitude of field variables. Figure 6a shows the distribution of the flow 

field , while Figs. 6b and 6c show the corresponding distributions of the 

velocity  and density  fields. The flow enters the road section at 
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and moves in the x direction. At the rush-hour its amplitude first grows with 

time t to the maximum and then falls again. When passing through the bottleneck 

its maximal value is decreased and the peak is flattened. The reduction of velocity 

in the bottleneck is observable in the graph of its distribution in Figure 6b as blue 

downward step. At low t the velocity is high at low x, but when cars pass the 

bottleneck, their velocity, is decreased due to the decreased speed limit.  

Simultaneously with decreasing velocity the density is increased as shown in 

Figure 6c. 

a  

b  

c  

Figure 6:  Distributions of traffic field variables: (a) flow rate, (b) velocity, density (c). 

Left – ground plan, right – side view. 
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With increasing time and flow at rush-hour the reduction of velocity in the 

bottleneck leads to evolution of jam with an expressive peak. At the peak the jam 

exhibits wave-like structure that corresponds to stepwise movement of cars. When 

the rush-hour maximum is passed, the input flow again starts decreasing, which 

further leads to a decreased density, increased velocity and dilution of the jam by 

the flow through the bottleneck. A similar evolution of jam as in the morning is 

observed also in the afternoon rush-hour time. From the graphs of field variables 

we can forecast the length of jam and its velocity of spreading.  

4 Estimation of jam length 

Macroscopic modeling of traffic by partial differential equations yields rather 

general description of the traffic jam evolution at the bottleneck in terms of 

dynamic field variables. As demonstrated in the previous section the system of 

Eqs. (1-3) has to be solved for this purpose. However, for practical purposes most 

often just an approximate value of the traffic jam length is sought, and 

consequently, there appears a question how to avoid numerical treatment of partial 

differential equations. For this purpose we next turn to an approximate treatment 

of the complete problem. With this aim we first define the capacity of road by 

using the fundamental diagram of flow rate and then apply it in an approximate 

estimation of the jam length. 

 

 

Figure 7: Dependence of road capacity  on the speed limit vo. 

 

As mentioned previously, the basic property of roads traffic is that its flow rate 

exhibits a maximum at certain characteristic value of density. The maximal value 
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Qm, that represents the road capacity, depends on the speed limit. The 

corresponding dependence has been determined numerically from the 

corresponding fundamental law and is shown in Figure 7.  

 

 

Figure 8: Dependence of output (bold) and input (dotted) flow on time.   

 

 

Figure 9: Estimated number of jammed cars Z in dependence of time t. 

Quite generally a lower value of speed limit yields a lower value of road 

capacity. This property leads us to the following simplified reasoning about the 

jam development at the bottleneck. Let us consider the example when the input 

flow Qi is increasing with time. As long as the input flow is below the bottleneck 

capacity we can assume that all cars pass it fluently. But, when the input flow 
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surpasses the capacity, the bottleneck stops a portion of input flow: . 

This difference then causes increasing number of cars in front of the bottleneck 

and evolution of jam. If we know the dependence of input flow on time, we can 

estimate the number of stopped cars Z by integrating  with respect to time. 

We can then estimate the corresponding jam length L by multiplying the number of 

stopped cars by the distance between cars that corresponds to the speed limit of the 

bottleneck.  

To demonstrate the proposed approximate characterization we again consider 

the example from the previous section. Figure 8 shows the input (dotted) and the 

output (solid) flow. The latter is determined by the bottleneck capacity that 

determines the level of the horizontal section in the graph. The corresponding 

estimate of the number of cars Z in the jam, as determined by the integral of 

, is shown in Figure 9. 

Diagram on Figure 8 renders possible a rough estimation of the speed of jam 

propagation in backward direction that could be compared with the result shown 

on Figure 9. The bottleneck during the rush-hour time does not permit all 

incoming cars to pass it when the input flow surpasses its capacity 1422veh/h. The 

difference between input and output flow contributes to the formation of jam. If 

we assume approximately linear increasing and decreasing of flow from ~1400 to 

~1800 and back to ~1400veh/h in the time interval from 6-8h, then we obtain that 

about ~200veh/h is stopped in this interval which yields in 2h about Z~400 

vehicles. If we assume approximately quadratic dependence of flow on time during 

rush-hour we obtain the value Z~540, which coincides well with the height of the 

first peak in Figure 9. If all cars were not moving and closely packed, the 

corresponding length of jam would be L~λZ~3km. But the cars are mowing in the 

jam approximately with the speed determined by its limit in the bottleneck, and 

consequently the approximate distance between them is m that 

yields four times longer jam length L~12km. This value coincides well with the 

length of first peak determined by solving differential equations and shown in 

Figure 6.  

Estimation of the jam length is less reliable than the corresponding number of 

cars, since the distance between cars is changing with their velocity that depends 

also on properties of the jam. However, the determination of the number of 

stopped cars is also only approximate since the jam can also influence the 

dynamics of the flow in the bottleneck itself. More accurate determination of the 

jam length can thus be obtained just by a strict accounting of the flow dynamics, 

as described in the previous section. Irrespectively of this deficiency, we can 

introduce a jam characteristic by the integral of stopped flow that is applicable for 

an approximate prediction of jamming phenomenon. An advantage is that for such 

characterization we need just the predicted input flow in dependence on time and 

the bottleneck capacity. 
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5 Conclusions 

We have shown that in spite of rather complex, non-linear, and stochastic 

character of traffic, it is possible to model the equilibrium properties of the 

complete phenomenon by the fundamental diagram (Treiber and Kesting, 2010). 

This diagram provides for definition of road capacity and rather simple estimation 

of properties of traffic jam evolving at the bottleneck. Inclusion of the relaxation 

equation and the continuum equation into description further stretches the 

applicability of our macroscopic description to non-equilibrium states. These two 

equations describe the adaptation of velocity to its equilibrium value and the 

adaptation of the density to the velocity and with it related traffic flow rate. The 

flow rate is applicable also for description of the traffic source term in the 

continuity equation which further renders possible forecasting of traffic jam 

evolution caused by various disturbances, as is for example a bottleneck. For this 

purpose the flow rate predicted by previously developed intelligent unit is readily 

applicable. The presented characteristic example of jam formation reveals most 

characteristic features of this phenomenon. The method presented here has been 

just developed, and consequently it still needs a thorough experimental 

verification of performance in real situations before it could be practically applied.  
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