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Signed networks

Signed graph is an ordered pair (G, o), where:
e G = (V, L) is a graph with a set of vertices ' and a set of lines L

e 0: L — {p,n}isasign function, the lines with the sign p are positive,
the lines with the sign n are negative. Positive lines are drawn with

solid, negative with dotted lines.

The question is:
Is it possible to partition vertices of a signed graph, so that every line that
connects vertices that belong to the same cluster is positive and every line

that connects two vertices that belong to different clusters is negative?

o /
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/Ifit 1s possible to partition vertices in this way, we call the signed graph\
partitionable or clusterable. Especially important are signed graphs where
vertices can be partitioned into 2 clusters. Such graphs are called balanced.

In the case of people who are friends and enemies a balanced signed graph
means that there exist two clusters of people, such that there are only
friends inside the clusters and nobody has a friend in the other cluster. This
situation 1s very stable — it cannot happen that there exist a person and two
other friends, and the person is a friend of one of them and enemy of the
other.

In most real life examples signed graph 1s not partitionable. In such cases we
would like to find partition, which is as close to ideal partition as possible —
which has the lowest number of errors. The error of given partition is:

e cvery negative line among vertices in the same cluster and

ko every positive line among vertices in different clusters. /
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/ Example: Sampson monastery \

Sampson studied relations among 18 monks in the New England monastery.
He measured several relations:

e friendship (affect)
e csteem

e influence

e sanction

Friendship relation was measured in three time points 75, T35 and T}, all
others only in 77.

Relations among monks can be represented as valued signed graphs. Each
monk selected 3 other monks whom he liked / disliked the most. A citation
of +3 goes to the most liked monk, a citation -3 goes to the most disliked

Qlonk. /
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/Friendship relation in 75

(black boxes for positive values; red diamonds for negative values):
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/

points is given.

Results

In the table the total error score for friendship relation in all three time

~

No. of clusters 1> 13 Ty
1 | 485 480 47.0
2 | 215 160 125
31175 11.0 10.5
41 19.0 135 125
51205 16.0 150

Two important facts:

time.

ko In all time points the lowest error occurs for 3 clusters. Therefore /

e For any number of clusters the error in 75 1s lower than in 75 and error

in T} 1s lower than in 75. Conclusion: balance is improving during the
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partition into 3 clusters in the most "natural’.

Look at the partition into 3 clusters:
e Optimal partition is equal for all three time points.

e Partition 1s equal to the partition reported by Sampson, which he

obtained using examining the monks.

Maybe this result is a little surprising. It means that the clusters are not

changing but relations among monks are more and more ’clear’:

e more lines inside clusters are positive, more lines among clusters are

negative;

e negative lines inside and positive lines between clusters are weaker.

o /
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/Pkrmuted matrix in 75: \
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/ Temporal networks \

Networks that are changing over time:
e network of friendship in the class in school over several years;

e changes in signed graphs over time
(Sampson monastery data, Newcomb fraternity);

e network of phone calls inside selected set of phone numbers (used by
the police in the investigation of organized crime);

e citation networks from a selected scientific area;
e network of transitions of a ball in a football game;
e changes in HIV networks;

e relations among actors in different episodes of movies;

k. births, marriages and deaths in genealogies. .. /
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‘Lindenstrasse’ in episodes 5, 6 and 7

Relations among actors in the long-running German soap opera
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Episode 5
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Blockmodeling

The goal of blockmodeling 1s to reduce a large, potentially incoherent

network to a smaller comprehensible structure that can be interpreted more
readily. Blockmodeling, as an empirical procedure, is based on the idea that
units in a network can be grouped according to the extent to which they are

equivalent, according to some meaningful definition of equivalence.

14
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sl.
s2.
s3.
s4.

Structural equivalence

Units X and Y are structurally equivalent if they are connected to the rest
of the network in identical ways (Lorrain and White, 1971). If X and Y are
structurally equivalent they are interchangeable.

X and Y are structurally equivalent iff:

XRY < YRX
XRX < YRY
VZ € E\{X,Y}: (XRZ < YRZ)
VZ € E\{X,Y}: (ZRX & ZRY)

~

15
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Ideal blocks compatible with structural equivalence are:

00000 1000
00000 0100
00000 0010
00000 0001
11111 0111
11111 1011
11111 1101
11111 1110

16
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RI.
R2.

Regular equivalence

X and Y are regularly equivalent if they link in equivalent ways to other
units that are also equivalent.

X and Y are regularly equivalent iff:

XRZ=3IWe€E:(YRWAW ~ Z)
ZRX = 3W € E: (WRY AW ~ Z2)

17
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Ideal blocks compatible with regular equivalence are:
e null block

e blocks that have the property that there is at least one 1 in each of their
rows and in each of its columns 1n regularni bloki

00000 10100
00000 00101
00000 01000
00000 10110

Structural euqgivalence 1s also regular equivalence.

o
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Example

The analyzed network consists of social support exchange relation among
fifteen students of the Social Science Informatics fourth year class
(2002/2003) at the Faculty of Social Sciences, University of Ljubljana.
Interviews were conducted in October 2002.

Support relation among students was i1dentified by the following question:
Introduction: You have done several exams since you are in the second
class now. Students usually borrow studying material from their colleagues.
Enumerate (list) the names of your colleagues that you have most often
borrowed studying material from. (The number of listed persons is not
limited.)

o /
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Indirect approach - using dissimilarity matrix

21
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Reoredered matrix
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Direct approach - optimization

/

Does center-periphery model fit our data?
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