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Abstract

The argument presented in this paper is that one fruitful approach to the study of social network
evolution takes the form of examining event sequences as generating mechanisms. Evidence for
this comes from two empirical studies of structural balance theory and one simulation study of
balance theoretic processes. Four views of causality—system, statistical (predictive), mechanism
and algorithmic—are briefly contrasted and then examined with structural balance theory in mind.
The conventional statement of the theory turns out to be under specified and inattentive to alterna-
tive mechanisms that can generate signed networks through time. Empirical studies of structural
balance are limited with regard to the kinds of data that are usually collected. Proposals for studying
the generation of signed networks through event sequences while being attentive to structural bal-
ance ideas are presented. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The term ‘evolutionof social networks’ suggests that (some) social networks change
through the operation of coherent social processes. In turn, this suggests that substance is
an important source when examining network evolution. One coherent substantive theory
is structural balance theory. More importantly, it is a theory concerned with through time
social network change for signed social relations. As such, it can provide a useful point
of departure for examining social network evolution. This paper attempts to reconcile two
very divergent assessments of this theory as a step towards understanding the evolution of
signed structures. This reconciliation leads naturally to an examination of event sequences
as potential generators of evolutionary change of network structures.

Davis (1979, p. 52) sees structural balance theory as ‘nifty’ in the sense of being “falsi-
fiable, nonobvious and simple” (and therefore successful). In contrast, Opp’s (1984) bleak
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assessment is that the theory failed and fell from favor because of insufficient empirical
support. At best, the empirical evidence was mixed and inconclusive. Reconciling these
seemingly inconsistent views rests on a series of ideas taken from social network analysis,
a mathematical statement of structural balance theory, meanings of the term causality in a
social network context, some recent empirical assessments of balance theory using longi-
tudinal data and a computational simulation model of balance theoretic processes. These
arguments are coupled to forge an argument that network evolution can be studied usefully
in terms ofevent sequences.

2. Evolution of social networks

The most straightforward definition of a social network is in terms of a set of social actors,
V, and a social relationR. In formal terms, a network,G, is defined asG = (V,A) where
A ⊆ V ×V andR = {Ai ∈ A} is the social relation defined over the elements ofV. While
the idea of a network can be extended straightforwardly to multiple relations,{Rj }, this dis-
cussion will be framed in terms of a single relation. Given the focus on structural balance,
the ‘like–dislike’ relation is the primary example used here. Discussions of networks evolv-
ing can be cast in terms of relational ties changing through time. Doreian et al. (1997, p. 3)
argue that “network processes areseries of eventsthat create, sustain and dissolve social
structures” (emphasis added). For my purposes here, the crucial idea is thesequencingof
events. While this leaves open the question of the nature of the mechanisms generating the
sequences of network related events, an idea to be explored here is whether the sequences
themselves form generating mechanisms. Stokman and Doreian (1997, p. 235), in an effort
to outline some principles for analyzing social network evolution, made three observations
that have relevance for this discussion. One is that for many network studies “the underlying
process for network change is assumed to be located in the network structure”. Their use of
the term ‘process’ is, perhaps, unfortunate because it suggests that only one process oper-
ates. It is necessary to modify this formulation to include the possible operation of multiple
processes.

In one of the empirical papers that is important for the empirical part of this discussion,
Doreian and Krackhardt’s (2001) empirical assessment of structural balance theory (see
Sections 3 and 6) concluded that the balance theoretic process is better viewed as a set of
multiple balance processes. Implicit in the notion of the structure of the social network at
one time point conditioning the structure of the network at a subsequent time point is the
idea of the network being a self-organizing system. It changes through time as a result of
the operation of generating rules where the attributes of the actors are thought to play little
or no part in the process.

A second observation from Stokman and Doreian (1997, p. 237) (for other network
studies) is “the underlying process for network change is assumed to be located in charac-
teristics of network members”. Here, actor attributes matter and this qualifies the idea of an
autonomous systemic self-organizing social network into one that is self-organizing while
actors pursue network based goals. Consistent with theintentof Stokman and Doreian, con-
sideringbothnetwork structures and actor attributes in empirical analyses seems essential.
While this is both a modest and unoriginal idea, Doreian (2001a) points out that there are
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major empirical problems in doing this. The simulation study informing the discussion in
Section 7 provides an example of a multiple-level process.

Stokman and Doreian’s (1997, p. 237) third observation, as an extension of the second, is
that “some of these individual characteristics evolve over time as well”. There is a sense in
which the social network, as a structure, co-evolves with the actors as actor attributes both
affect the structure and are affected by the structure. This seems particularly relevant in the
context of structural balance theory. Another finding of Doreian and Krackhardt (2001) is
that the actor attributes of being ‘likable’ or ‘dislikable’ also evolve through time under the
operation of balance theoretic processes that also structure the pattern of signed ties in a
social group. There is a sense also that the ‘global’ structure of the network is created as an
emergent phenomenon through time in ways that are not reducible to terms of unchanging
actor attributes and the actions of actors.

Stokman and Doreian (1997) also articulated six principles for constructing models that
capture network evolution:

• P1: Networks have an instrumental character for network members as these members
have structured goals and some goals are achieved through network choices.

• P2: Actors, at least in part, act on local information.
• P3: There is parallelism whereby actors can act separately (but not completely indepen-

dently).
• P4: Models should be kept simple (at least initially).
• P5: Models should have sufficient empirical referents.
• P6: There is a need to estimate essential ‘parameters’ and test (the goodness of fit of )

models.

While these were straightforward to delineate, mobilizing them is another matter.1 The
utility and practicality of these principles will be examined (as a secondary goal) in the
context of empirically studying balance theory.

3. Structural balance theory

Heider (1946, 1958) has been credited with the first systematic statement of balance
theory. It started life in his formulation as a process that operates within the minds of actors.
The straightforward intuitions of his theory are captured in the triples shown in Fig. 1.

In this figure,{p, o, q} represent three social actors and a social relation that is signed
with positive and negative affect. My concern is focussed on relations among social actors
and these actors’ perceptions of the set of signed social relations within which they are
located.2 In these triples,p → o representsp’s liking or disliking of o. Similarly,p → q

representsp’s signed tie toq. The tieo → q isp’s perceptionof the signed tie fromo to q.
There is no requirement that this perception is veridical. The solid lines represent positive

1 It may also be appropriate to join the Stokman and Doreian observations outlined before the list of principles
into a principle in its own right.

2 In this discussion, I am ignoring Heider’s distinction between an affect relation and the ‘unit formation’
relation—consistent with most discussions of balance theory.



96 P. Doreian / Social Networks 24 (2002) 93–119

Fig. 1. Balanced and imbalanced signed triples.

ties while the dashed lines represent negative ties. Heider argued that some of the triples in
Fig. 1 are ‘comfortable’ while others are not.

All of the triples in the top row of Fig. 1 are ‘balanced’ and ‘comfortable’. The top left
triple is a balanced configuration that is captured by the folk aphorism that “a friend (q) of a
friend (o) is a friend (ofp)”. In the second triple from the left in the top row of Fig. 1,p likes
o, dislikesq and perceives thato also dislikesq. This triple is captured by “an enemy (q) of
a friend (o) is an enemy (ofp)”. In the next triple in the top row,p dislikes botho andq and
perceives thato likesq. Heider viewed this as balanced and the corresponding folk aphorism
is “a friend (q) of an enemy (o) is an enemy (ofp)”. The fourth balanced triple of the top
row corresponds to “an enemy (q) of an enemy (o) is a friend (ofp)”. In contrast, all of the
triples in the bottom row of Fig. 1 were viewed as ‘imbalanced’ and ‘uncomfortable’. The
leftmost triple represents a situation wherep likes o while disliking q. Also,p perceives
that o likes q. Heider viewed this as psychologically difficult forp. If p decided that
she dislikeso, this triple moves from an imbalanced state to a balanced state (the third
triple from the left in the top row of Fig. 1). Alternatively,p could decide to likeq and
so create an all positive (balanced) triple. It is possible also forp to change the perception
of the tie fromo to q. In the second triple (from the left)p likes botho andq but perceives
(or knows) thato does not likeq. This too was thought to be imbalanced forp—p’s two
friends do not like each other—and so uncomfortable. Two avenues forp achieving balance
take the form of changing either the tie too or changing the tie toq. Again, changing the
perception of theo toq tie to a perceived positive tie achieves balance. The third triple in the
bottom row can be given a similar interpretation. The rightmost triple is rather awkward but
was treated as imbalanced by Heider. In Heider’s formulation, imbalance creates discomfort
and this generates ‘forces’ that move triples towards balance. Of course, these triples can
be viewed simultaneously fromo’s or q ’s vantage points. And the group situation gets
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more complicated whenp, o, andq are embedded in many other triples subject to the same
dynamics. This more general configuration was treated by Cartwright and Harary (1956)
when they generalized structural balance theory using signed graphs. More formally, a
signed networkis an ordered pair,(G, σ ), where:

1. G = (V,A) is a digraph, without loops, having a set of vertices,V, and a set of arcs,
A ⊆ V × V; and

2. σ : A → {P,N} is a sign function. The arcs with the signP arepositivewhile the
arcs with the signN arenegative. Equivalently, and consistent with most diagrams of
signed networks;σ : A→ {+1,−1}.

Such a social network can be denoted by(V,A, σ ) wherevi is an actor and an ordered pair
(vi, vj ) ∈ A is a tie from the actor to the actorvj if vi, vj ∈ V. The actors{vi} in this
formulation include{p,o,q}. For thepoqtriples3 of Heider (1946, 1958) and of Newcomb
(1961),p, o, q ∈ V while the ties are elements ofA. In the formulation of Cartwright and
Harary (1956), the networks can have any size. Their key step was to define the sign of a
triple as the product of the signs of the links in the triple. If the resulting sign is positive
the triple is balanced and if this sign is negative, the triple is imbalanced. Consistent with
this, the sign of each triple in the first row of Fig. 1 is positive and the sign of each triple
in the bottom row is negative. The idea of the sign of a triple extends naturally to the sign
of a semi-cycle of any length.4 A network (graph) is balanced if all of its semi-cycles are
balanced. Using this formulation, they produced a remarkable theorem concerning signed
graphs:

Theorem 1. A signed graph(G, σ ) is balanced if and only if the set of verticesV can be
partitioned into two subsets so that every positive arc joins vertices of the same subset and
every negative arc joins vertices of different subsets.

This will be referred to as the ‘first structure theorem’. Its form is a prime example of using
mathematics to reveal a deeply significant structural feature ofgroupsgiven the presumed
balance processes operating in the minds of actors. It links the micro-level processes of
actors to the macro-structure of groups generated by balance theoretic processes. If balance
theoretic processes are operative, the resulting structure is a group where there are two
mutually hostile subgroups each with internal solidarity.5

Although the conceptual standing of the all negative triple was unambiguous in Heider’s
account, having it imbalanced is less than satisfactory. Davis (1967) examined the conse-
quences of specifying this all negative triple as balanced. He generalized the first structure
theorem into the ‘second structure theorem’:

Theorem 2. A signed graph(G, σ ) is k-balanced fork ≥ 2 if and only if the set ofV can
be partitioned intok subsets, called plus-sets, so that every positive arc joins vertices of the
same subset and every negative arc joins vertices of different subsets.

3 Strictly, Heider and Newcomb used thepoxtriples wherex can be any social object. However, my concern here
is with social actors andq replacesx in this discussion.

4 If the graph is complete, it is enough to examine just the triples.
5 The structure theorem holds trivially if there is just one group and all of the relations are positive.
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At least two lines of empirical inquiry were triggered by structural balance theory. One
stayed close to the roots of the theory and examined triples and perceptions of signed triples
(usually in simple laboratory experiments). The other ventured out into the realm of groups
that were larger than triples. It is this stream of research and the study of the structure of
signed networks in groups that concerns me here. Virtually all of the data used to study
structural balance in real groups took the form of examiningrelations among the actors
of the group. As a result, the accumulated empirical literature on structural balance does
not appear to speak directlyto Heider’s initial formulation. By looking only at signed
ties between actors, the idea that there are mechanisms operating within the minds of the
actors was discarded. If mechanisms were operating they were assumed to operate at the
level of the group. This is tantamount to assuming that the signed network structure changes
in a self-organizing fashion regardless of the attributes of the actors. Although this is a
reasonable specification, making it handicaps us in the study of the dynamics of structural
balance.

The central substantive insight of structural balance theory is that signed networks move
towards balance over time. This is the so-calledfundamentalstructural balance theoretic
hypothesis(FSBH). To assess this hypothesis requires two things: (1) longitudinal data and
(2) a measure of imbalance. There has been a dearth of longitudinal signed network data.
Analyses of two of the few longitudinal data sets are considered in Section 5.

There are at least two approaches to measuring the amount of imbalance in a graph. One
approach is to get a census of semi-cycles and construct ratios of the number of balanced
semi-cycles to the total number of semi-cycles. This approach bogged down because it
was not clear how to treat semi-cycles of differing lengths and determining all cycles is
a difficult graph theoretic problem. A good general algorithm to locate cycles is a recent
development (Hummon and Fararo, 1995). An alternative approach is to adopt Harary’s
(1959) ‘line index’ of imbalance as the number of lines for which the reversal of their signs
leads to a balanced network (graph). Numerically, this index is the same as the number of
lines whose deletion leads to a balanced graph (Harary et al., 1965, p. 350).

While having a measure of imbalance makes it possible to discern movement towards
balance (or not) it does nothing to describe the structure of the group through time. The kinds
of structures described in the structure theorems (or approximations to those structures)
may be of even more sociological interest than just the movement of an imbalance measure
through time. Doreian and Mrvar (1996) proposed a method for both locating partitions
of actors so that the pattern of signed ties is closest to the ‘ideal’ types of structures as
described by the structure theorems and a measure of imbalance that was the line index
(negation or deletion) proposed by Harary (1959). More formally, they sought to determine
the clustering(s)C∗ for which

P(C∗) = min
C∈Φ

P (C)

whereC is the clustering of a givenset of verticesV, Φ the set of all possible clusterings
andP : Φ → R acriterion function.

The criterion function is constructed from inconsistencies with a balanced structure.
These inconsistencies take one of the two forms: they are either negative ties within a
plus-set or positive ties between plus-sets. A criterion function can be based on this idea.
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LettingN be the total number of negative ties within plus-sets andP be the total number
of positive ties between plus-sets, the criterion function is defined as:

P(C) = N + P
In this formulation, the two types of inconsistencies are treated as equally important: the
criterion function is simply the count of all inconsistencies regardless of their type.6

The criterion function is then minimized by using a relocation algorithm. The procedure
provides sets of empirical partitioned structures that are as close to an exactly balanced
partition as is possible. In addition, for each such partition, their method provides a list of
ties that are inconsistent with balance. One of the few (and legendary) longitudinal data sets
with signed data was collected by Sampson (1968). Doreian and Mrvar used the Sampson
data set to test the FSBH described.

These results are considered briefly in Section 5. The Sampson data come in the form
of reported signed ties between actors and have a variety of weaknesses. In terms of my
discussion here, one important feature of those data is that they are defined at the group
level and are utterly silent about what could have been going on in the minds of the actors.
In short, Heider’s defining formulation of cognitive and affective processes going on in
the minds of actors was ignored (in common with all other studies at the group level of
signed social networks). This may have been an important omission in so far as it ignores
the first of the principles,P1, outlined by Stokman and Doreian (1997) and reproduced in
Section 2.

4. Causality and causal mechanisms

Doreian (2001b) provides a discussion of causality with regard to social network anal-
ysis. In that discussion, four possible ways of conceptualizing causality are distinguished:
(1) system causality; (2) statistical (or predictive) causality; (3) mechanism causality;
(4) algorithmic causality. While attention is confined here primarily to the second two
conceptualizations of causality, the first has a role to play in this discussion.

4.1. System causality

Social network analysts view their enterprise as having a structural focus that is con-
cerned with the structures of social networks, their effects and how they are generated. The
traditional social scientific language of variables and relations between variables does not
fit neatly into this paradigm (Wellman, 1988; Abell, 1987). Yet this is a natural language in
which system causality can be expressed. Provisionally, a social system can be expressed

6 A slightly more general criterion function is:

P(C) = αN + (1 − α)P
where 0≤ α ≤ 1. With α = 0.5, the two inconsistencies are equally weighted. For 0≤ α < 0.5, positive errors
(lines between plus-sets) are more important and for 0.5< α ≤ 1, the negative errors (lines within plus-sets) are
considered as more consequential.
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in terms of a set of variables and one or more social processes linking and generating tra-
jectories of these variables through time. More precisely, “thestate(of the system) is some
compact representation of the past activity of the system complete enough to allow us to
predict, on the basis of the inputs, exactly what the outputs will be, and also update the state
itself” (Padulo and Arbib, 1974, p. 21).

Let x represent a set of, saym, variables that characterize a system and letx(t) represent
the state of the system at time,t . Suppose the system exists at timet0 and receives inputs,
represented byz. If the state of the system att0 is x(t0) then the new state of the system
is given byx(t1) = φ(t0, t1, x(t0), z) for some well defined functionφ. “This functionφ
is called thestate transition mapand it tells us that if we specify two timest1 and t0, a
statex̃, and an admissible input functionz, then, if we start the system in statex̃ at time
t0 and apply the input functionz, the system will end up at stateφ(t0, t1, x̃, z) at timet1”
(Padulo and Arbib, 1974, p. 27). The output of the operation of the system is given by some
functiony(t1) = η(t1, t0, x(t1), z). This characterization is for a deterministic system. If the
subsequent state of the system and the output are not predicted exactly then the system is said
to be stochastic. Ifz(t) is a time varying vector of exogenous variables, then a differential
equation systems can be represented simply as:

ẋ(t) = f (x(t), z(t), c) (1)

wherec is a matrix of parameters (or products of parameters) andf is a well defined
function. In general, such a differential equation system can be solved to yield

x(t) = g(x(t), z(t), c) (2)

whereg is another well defined function. If there are no exogenous inputs, then Eqs. (1) and
(2) are written aṡx(t) = f (x(t), c) andx(t) = g(x(t), c), respectively. Notationally, and
conceptually, these two equations are those used by Fararo (1989, pp. 74–75) to represent
a general dynamical system. This can be made more complex, and perhaps more veridical,
through the use of stochastic differential equations or partial differential equations.

Eqs. (1) and (2) (or their variants without exogenous inputs) are particularly important
as they describe thegeneratorsof the processes. If the parameters, the initial conditions (at
t0) and the exogenous inputs,z(t), are all known, these equations can be used to generate
the states of the system and its outputs at each point in time. Fararo (1989) uses the term
recursive generationto label such processes.

To bring this kind of thinking into social network analysis is not a straightforward task.
Relations between actors can be expressed in terms of variables. In the case of signed
relations, one variable could be the sign of relations which may switch through time. Another
could be the intensity of the relation that can vary through time. Specifying the differential
equations as generating mechanism will be tricky for two reasons.

First, the formulation in terms of a system represented byx(t) andz(t) is natural in the
literature of systems theory where a distinction is made between asystemand anenvironment
within which the system is located. Clearly a social network is a (social) system and much
of the (verbal) language used to describe networks stresses the interdependence of the parts
of a network linked through the social ties of the social relation(s). While this ‘system and
environment’ language is clearly applicable to conventional network imagery, it requires an
orientation within which networks and their environments are both considered. Yet, network
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analysts tend to focus on ‘the networks’ of interest and then study these networks as objects
divorced from the environments within which they are located. Of course, adopting a system
causality perspective can be done for a network by itself but it would seem much more
fruitful to include consideration its environment(s). With this change in orientation, the
second difficulty to overcome is the specification of the equations themselves. Lacking a
tradition where environments of networks are routinely included in the analysis of networks
leaves network analysts handicapped in attempting to make these specifications.

4.2. Statistical or predictive causality

The literature on ‘causal modeling’ in the social sciences is huge but tangential for
the current discussion. I have in mind all of the statistical tools that can be employed
to detect, describe and explore causal relationsbetween variables. Regardless of where
the arguments are made in terms of regression equations or structural equation models as
systems of equations, the difficulties are immense. See, for example, Clogg and Haritou
(1997), Doreian (2001b), Freedman (1997). While equations, and systems of equations, can
be estimated the causal modeling enterprise boils down to telling ‘causal stories’ (Morgan,
1997) given the estimated equations. This, in itself, is modest and most appropriate. Perhaps
the telling of these stories provides a better understanding of the phenomena than do the
claims of having ‘detected’ causal relations embodied in systems of equations. In the context
of structural balance, it is not clear—at least to me—what the equations would look like.

Statistical methods are used for network analysis in a variety of other ways. A rich
tradition starting with the Holland and Leinhardt (1981)family ofp1 models, leading to the
Feinberg and Wasserman’s (1981) application of log linear modeling tools, to Wasserman
and Pattison’s (1996) use of logit modeling methods to estimatep∗ models provide clear
evidence of the use of statistical procedures to analyze social networks. See Robbins and
Pattison (2001) and Robbins et al. (2001) for recent applications of this approach. As far as
I know,p∗ models have not been applied to signed networks.

4.3. Mechanism causality and sequences of events

Looking at ‘social mechanisms’ and ‘sequences of events’ provides another approach
to the issues raised by using causality in providing explanations of social organization
generally and the generation of structure in the sense of social network structure. One link
between predictive causality and this discussion is provided by Cartwright (1997) in her
discussion of a causal structure conceived as “an ordered pair,〈V,E〉, whereV is a set of
variables, andE is a set of ordered pairs ofV where〈V,E〉 is in E if and only if X is
a direct cause ofY relative toV ”. She writes “(a) lternatively,V can be a set of events.
But we should not be misled into thinking we are talking about specific events occurring
at particular times and places” (1997, p. 343). Clearly, in Cartwright’s formulation, events
can be viewed as ‘generic’ or ‘universal’ in some broad sense that is divorced from specific
empirical (concrete) locations in time. Presumably generic processes can be described in
terms of these general mechanisms. However, it is impossible to think in terms of generic
mechanisms without the observation of specific events and event sequences having occurred
at some specific times and places.
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A focus on ‘specific events’ draws us into the arena of ‘social mechanisms’, a concept
not defined uniquely in the literature. Even so, the general idea is clear as well as the role
of mechanisms in constructing social theory. For my purposes here, I will use the defini-
tion put forward by Hedström and Swedberg (1998, p. 1) when they claim that the theory
goal is “to explicate the social mechanisms that generate and explain observed associations
with events”. They echo Cartwright’s caution by stating that a social mechanisms approach
“should not be confused with a purely descriptive approach that seeks to account for the
unique chain of events that lead from one situation or event to another.” This is a very
subtle distinction: we observe sequences in the empirical world and seek to account for
them in terms of ‘generalized’ mechanisms that are also sequences of some kinds of events.
Hedström and Swedberg (1998, p. 2) insist that the distinction be made as they go on to
observe that their vision for explanatory sociology includes the creation of “an ensemble of
such fundamental mechanisms that can be used for explanatory purposes”. For them, a sim-
ple description of a sequence of events in a specific empirical context is not an explanatory
account. This seems too extreme.

A useful example comes from studies of animal social structure in the form of dominance
hierarchies. Chase (1992) and Fararo et al. (1994) consider ‘fighting’ and ‘bystander’ mecha-
nisms as generators of dominance hierarchies among primates (among other animal species).
The outcome of repeated fights establishes dominance patterns between primates in the pairs
of primates (in a particular primate group) who fight each other. As this has been observed in
many primate groups, it seems reasonable to talk of a generalized fighting mechanism as a
generator of dominance. However, this mechanism, by itself, is insufficient as an account of
the generation of the observed hierarchies in primate groups. The (specific) fights and their
outcomes are observed by other primates in specific groups. These bystanders develop dif-
ferent orientations towards the ‘winners’ (an increased likelihood of being submissive) and
the ‘vanquished’ (an increased likelihood of trying to be dominant). The arguments involve
a subtle alternation between specific event sequences in particular primate groups and con-
ceptions of generalized mechanisms that hold for all primate groups (satisfying the requisite
scope conditions) in order to have a general theory about dominance in primate groups.

This discussion points to the task of constructing general descriptions of mechanisms
and event sequences that generate signed network structures through time. Mindful of the
distinction made by Cartwright and by Hedström and Swedberg, this will entail both specific
empirical event sequences and generalized sequences and mechanisms. However, it starts
with a consideration of specific event sequences.

4.4. Algorithmic causality

Algorithmic causality takes its meaning from the term algorithm. “Informally, an algo-
rithm is any well defined computational procedure that takes some value, or a set of values,
as input and produces some value, or set of values, as output” Cormen et al. (1990, p. 1).
Of course, this is very similar to the definition of system causality. However, the crucial
distinction is that the language of differential equations is dropped from the definition and
emphasis is placed on computational rules and computational processes. The key idea is the
embodiment of rules in the code of the algorithm. For this discussion, I am concerned with
the coupling of substance with the specification of the rules (as described by Hummon and
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Fararo (1995)). In this context, object-oriented programming and parallel processing can
be used to represent rich social processes via rules operating on actors, events and relations.
“The rules can represent activities whose precise order is not determined in the simulation,
yet the global outcomes depend on the order in which the activities occur” (Doreian, 2001b,
p. 99). These ideas are mobilized in a simulation study of Hummon and Doreian (2002)
that is described briefly in Section 6.

5. Empirical assessments of balance theory

As noted in Section 3, any attempt to empirically assess the FSBH requires longitudinal
data on signed relations for a social group. Doreian and Mrvar (1996) used the Samp-
son data as one of the data sets in which they introduced their algorithm for partitioning
signed networks into plus-sets where the partitioned structure is as close as possible to
perfect balance. For each of three successive time points, the group of trainee monks in the
monastery studied by Sampson was partitioned into three meaningful subgroups (that were
richly described in Sampson’s (1968) ethnography) where the number of inconsistencies
with exact balance were 35, 22 and 21 when the original valued ties are considered. When
only the signs of binary ties are considered, the partitions are the same and the number of
inconsistencies is 20, 14 and 11 for the three time points. This provides mild support for
the FSBH with the additional interesting finding that the number of positive inconsistencies
(positive ties between plus-sets) outnumbered the number of negative inconsistencies (neg-
ative ties within plus-sets). Intuitively, this makes sense as the positive ties can be viewed
as idiosyncratic and not too deviant7 while the negative inconsistencies threaten the inter-
nal solidarity within a plus-set. This finding has been repeated in virtually all partitions of
empirical signed networks that I have seen.

Doreian et al. (1996) provided a more extensive examination of the FSBH using the
Newcomb’s (1961) data described by Nordlie (1958). These data came from a study of
pseudo-fraternity where 17 previously unacquainted young men were given room and board
in a ‘fraternity’ in exchange for providing data including weekly sociometric ratings of each
other over a 15-week period. Their central findings were three-fold. Reciprocity levels were
significantly higher than would be expected by chance at week 1 and, with minor oscillations,
reciprocity remained at the same level throughout the study period. Transitivity patterns were
quite different. The amount of transitivity was close to 0 and did not exceed what would be
expected by chance at the outset but it started to climb immediately. By week 3, it reached a
level that was significantly different from what would have been expected by chance and it
continued to climb until reaching a plateau at week 8. It did not increase much beyond that
point. The amount of imbalance as measured by the line index for the optimal partitions
located by the method of Doreian and Mrvar (1996) dropped throughout the first 14 weeks
of the study period—but with some reversals, see Table 6.

These are important results because they show that reciprocity, transitivity and balance
are network processes thathave different time scales. Interesting as these results are, they
do not tell us how to build a general model of the evolution of a signed social network

7 AlthoughRomeo and Julietprovides suggestive evidence to counter this.
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that incorporates and couples all three processes with their different time scales. At face
value, some sort of system causality model could be specified. However, the difficulties
seem rather daunting.

Another result from this empirical examination was the evolution of the partition structure
through time. Table 1 shows the partition structure at the first and final time points. At the
beginning, there are three clusters of sizes 4, 5 and 8. In contrast, at the final time point there
is one large subgroup of size 13 with the remaining three clusters being two singletons and
a dyad. Thestructureof the group hadchanged dramatically.

Table 1
First and final partition structures for the Newcomb data
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Table 2
Pre-transitive conditions, balance and evidence

Triple Tie 1 (p → o) Tie 2 (o → q) Tie 3 (p → q) Balance Supports balance

PPP + + + Yes Supports
PPN + + − No Supports
PNP + − + No Supports
PNN + − − Yes Supports
NPP − + + No Contradicts
NPN − + − Yes Contradicts
NNP − − + Yes Contradicts
NNN − − − Yes/no (Supports)

Doreian and Krackhardt (2001) returned to the Newcomb data with concerns that
focussed on the FSBH and the idea that ‘the’ balanceprocessmight not be asingleprocess.
They focused in their analysis on the eight triads of Fig. 1 and considered ‘pre-transitive
conditions’ (because the data come in the form of the sociometric ratings, theo → q tie
is the tie fromo to q and notp’s perception of that tie). The pre-transitive condition is
formed by thep → o and theo → q ties with their signs and the question is whether of
not thep → q tie completes the triple in ways that are consistent with structural balance.
Their design is shown in Table 2 whereP denotes a positive tie andN a negative tie. In
the first column, the triples are listed in terms of their signed ties. Tie 1 and Tie 2 form
the pre-transitive conditions and Tie 3 is the tie completing the triple. The next column
indicates whether the triple is balanced or imbalanced. The only ambiguity is in the last row
of the table. In the Heiderian view this triple in imbalanced while in the Davis view it is
balanced.

The FSBH states that the signed structure moves towards balance through time. In the
Doreian and Krackhardt analysis this was re-expressed in terms of the eight triples shown
in Fig. 1 (and Table 2):

• H1: Through time, the proportion of balanced triples increases.
• H2: Through time, the proportion of imbalanced triples decreases.

Doreian and Krackhardt counted the occurrences of these triples through time and used
permutation tests to determine if they occurred more frequently than would be expected
under random conditions (given the number of positive and negative ties in the network at
each time point). Some triples were present or absent at levels that would not be expected
under randomness at the outset and by week 6 all triple types were occurring more often or
less often (expressed in terms of relative frequencies) than would be expected by chance.
The final column of Table 2 shows the results in terms of the sub-hypotheses. If balanced
triples occur more frequently through time and if imbalanced triples occur less frequently
through time, the FSBH is supported. As described in Table 2, the triple isp-centric where
p → o andp → q are relations involvingp ando → q is the third relation. The actors
(p, o, q) are in aq-centric triple as well as ano-centric triple and the ‘counting of triples’
was done for all permutations of the actors in the network.
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Overall, the evidence in Table 2 is mixed. ThePPPand thePNNtriples are balanced and
they do occur more frequently through time.8 However, theNPNand theNNP triple are
both balanced and they occurredlessfrequently through time. When we turn our attention
to the imbalanced triples we see that thePPN andPNP triples do occur less frequently
through time, consistent with the FSBH. However, the imbalancedNPPtriple occurs more
frequently through time and contradicts the FSBH. The all negativeNNN triple provides
ambiguous evidence. These triples become more frequent and contradict the FSBH under
Heider’s formulation. However, for the Davis formulation, the increasing relative frequency
of this triple supports the FSBH.

At a minimum, the FSBH has to be qualified and it seems best to break it into sub-hypo-
theses. The singular balance process can be broken into sub-processes and onlysome
of them seem to operate in ways that are consistent with balance theory. This, however,
is not the end of the story as the results shown in Table 2 can be interpreted in ways that
suggest there are rival hypotheses to consider or rival mechanisms that may operate as a
part of the structural dynamics.

Staying within the Heiderian perspective, the triples that behave in accordance with the
FSBH all have the first tie (p → o) of the triple positive. This suggests that the mechanism
operates only when that tie is positive. Wheneverp → o is negative, there is no balance
mechanism at work. This result was, in fact, anticipated by Newcomb (1968).

A second way in which Doreian and Krackhardt looked at these results was to see if
there was anything in common with the triples whose relative frequency increased through
time. These triples arePPP, NPP, PNNandNNN. The common feature they share is that
the signs of the last two ties are the same. That is, regardless of the sign of the tie between
p ando, they ‘agree’ with each other aboutq. This suggests a non-structural mechanism:
the attributes ofq are critical in the formation of signed ties withq. However, this can be
qualified by a third interpretation suggested by Doreian and Krackhardt, one that I take up
in Section 7. Another possible interpretation is that whenp ando are linked by a negative
tie, they are motivated to compete as rivals for the attention ofq and this can accounts for
the imbalancedNPPtriple increasing in relative frequency through time.

These empirical analyses suggest looking at structural balance theory also in light of
the principles suggested by Stokman and Doreian (1997). It seems these principles are left
implicit when balance theory has been considered at the group level in empirical studies.
A case can be made that by ignoring actor level processes, nothing is assumed about actors
having goals and, as a result,P1 is ignored. Alternatively, an implicit assumption could have
been made that the actors are motivated to reduce imbalance and it is this mechanism that
drives the group level balance dynamics. Even so, it seems best to make such an implicit
assumption explicit if it is relevant for understanding balance processes.

To the extent that only the observed ties have been seen as relevant for studying structural
balance, it would seem that actors are not assumed to have local information in balance
theoretic studies. As a result,P2 has been ignored also. However, the assumption that actors
have local knowledge is not inconsistent with balance theory and it is possible to argue
thatP2 has been made implicitly. The main problem created by leaving the assumption
implicit is that it is not possible to know the different amounts local knowledge held by

8 The actual increase in the relative frequency of thePPPtriple was quite modest.
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actors nor how this differential knowledge enters balance theoretic processes. The Doreian
and Krackhardt’s (2001) result that the sign ofp → o matters regarding the operation of
balance mechanisms suggests an aspect of local knowledge that may be relevant. Further,
in the Heider’s (1946) formulation, theo → q tie in Fig. 1 is theperceptionof the tie byp.
The ‘real’o → q has been used in balance theoretic studies. This suggests that knowledge
has been viewed as global and, most likely, accurate. Both assumptions seem problematic.

It appears thatP3 has not been considered and the assumption that actors act in paral-
lel has not been made explicitly even though such an assumption is not inconsistent with
balance theory. With what is left implicit, it is not possible to examine parallel action
streams coupled into a model of group dynamics. Structural balance is certainly simple and
is consistent withP4. However,P4 is trivial as stated because ‘simple’ is a relative term.
The Doreian and Krackhardt results suggest that some movement from the simple balance
model is warranted. There are multiple balance mechanisms that might be operating to-
gether with rival mechanisms. Incorporating these processes with mean less simple balance
models.

If both actor level processes and a group level process are relevant, thenP5 is ignored
and there are insufficient empirical referents in the usual study of structural balance at
the group level. Finally, it seems thatP6 is honored most often in the breach. The FSBH
is remarkably simple and empirical studies demonstrating the decline of imbalance have
been hampered by not having a good semi-cycle based measures of imbalance (Hum-
mon and Fararo, 1995). There has been no statistical assessment of whether movements
of balance through time are statistically real. While the line index of balance used by
Doreian and Mrvar (1996) is simple and provides a measure of fit, it also lacks a statistical
foundation.

6. Simulating balance theoretic processes

Strong as the evidence—as described in the previous section—might be, the results are
limited given the origins of structural balance theory. We know nothing of the actors9 nor
do we have any information concerning their cognitions and feelings. The same is true for
the Sampson data and all data obtained from groups where only signed ties between actors
have been recorded. The potent generalization of balance theory provided by Cartwright
and Harary (1956) inspired an empirical approach where the cognitive dynamics were no
longer relevant. This may have been costly for the long term ‘health’ of the theory they
generalized.

I have no problem with the idea of a self-organizing balance theoretic process that
operates at the group level. However, modeling a balance processonly at this level ig-
nores the Heiderian foundation and theP1 principle of Stokman and Doreian (1997). It
seems reasonable to attempt to incorporate cognitive dynamics into a broader theoretical
model. Lacking empirical data about this, Hummon and Doreian (2002) built a simulation
model that incorporated both a group level process and an actor level process for each actor.

9 All descriptive information on, for example, who were roommates and common floor membership in the
Newcomb data, have been lost.
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They assumed that the FSBH is correctat the level of the actorand that states of imbalance
are undesirable for actors. In the Stokman and Doreian imagery, a part of the goals of actors
is to reduce imbalance, consistent with Heider’s formulation (andP1).

Hummon and Doreian (2002) coupled two simulation approaches. One was a multi-thread
agent-based model that was designed to show graphically the behavior of the simulated
actors. The second was a discrete event simulation model that was designed to implement
Monte Carlo experiments in order to get a sense of the range and distribution of behaviors
generated in the simulated processes. Both approaches implemented the same actor behavior
where the actors behaved as separate units—consistent withP3 as described in Section 2—
while being tied through the ties they generated.

Each actor has an image of the signed group structure but this image need not be consistent
with the ‘real’ signed structure. This step is consistent withP2 of Stokman and Doreian
(1997). The image held by an actor depends, in the simulation, on the information reaching
that actor. Given the image an actor has, that actor strives to reduce imbalance. For each
possible change of ties, an actor knows whether or not this change (by itself) will reduce
imbalance. In the case where there are multiple equally good changes, one is selected at
random. Each actor does this separately, consistent withP3, and reports the change. The
way an actor, sayp, reports the change is a design variable of the simulation where there
are four options:p reports the change only to the other actor,q, to whom the tie is changed;
p reports the change only to actors linked top by positive ties (tell friends);p reports
the change only to those to whichp is linked—which includes also negative ties—i.e. tell
acquaintances; or tell every other actor in the group. In this way, information held by actors
is local (in all but the last communication mode), consistent withP2.

The transmitted information also goes into the ‘group structure’ or model. In the simu-
lation, the Doreian and Mrvar procedure is used to locate those partitions at the group level
that are as close to perfect balance as possible. If there are multiple such partitions, one is
selected at random and the summary partition information is reported back to the individual
actors. This is joined with the local knowledge of actors. The group level structure has the
kind of information collected by Newcomb and Sampson. In this way, the group ‘process’
constrains and affects the actions of the individual actors. Feeding back the group structure
in terms of balance and ties inconsistent with balance implicitly implements a group level
process.

Additional design variables for the simulations include the size of the group and the
incidence of negative ties at the first time point. The latter notion is used to capture the
contentiousness of groups. All of these features are intended to provide plausible empir-
ical referents as suggested inP5. Throughout the simulations, the imbalance measure is
computed as the number of ties that have to be changed in order to reach balance. The
simulation continues until an equilibrium (that can be dynamic) is reached.10 The value of
P(C∗) is computed and forms a measure of fit—consistent withP6. Only partitions whose
values of the criterion function is the smallest are selected for further consideration by the
actors.

In these simulations, communication mode, group size and contentiousness had com-
plicated impacts of the amount of imbalance in the group structure, the number of actors

10 Or time runs out with the process incomplete. In empirical contexts, time is a relevant constraint.
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with balanced images, the number of acts needed to reach balance (or an equilibrium) and
the average number of plus-sets at equilibrium. The details are not easily summarized and
are not directly relevant for this discussion. However, the following results are of direct
relevance (Doreian, 2001a):

1. there can bevery manyequilibrium outcome structures;
2. given the same initial conditions and the same generating rules, there are many outcome

structures;
3. there were equilibrium group structures that werenotbalanced.

The first seems trivial at face value. However, it raises a key issue. In the simulated
world, many instantiations of a generic process are possible while, in the empirical world,
we are granted few realized instantiations of balance theoretic processes. Locating the
(few) empirical results in the whole range of possible outcomes is difficult as we lack
the knowledge of how diverse the outcomes can be. The second also seems trivial but
it reinforces the first in so far as thesame processcan generate verydifferentstructural
outcomes.11

These can range from a single group with only positive ties between actors to groups
that are deeply riven into mutually hostile groups. The third outcome is, perhaps, the most
interesting. Recall, the FSBH states that human signed structures move towards balance.
The strange, rather embarrassing empirical result, across many studies, is that very few, if
any, empirical signed networks among human actors reach a balanced configuration. Yet in
the simulation outcomes where there are equilibriumimbalanced structures, the individual
actors had balanced images of the overall structure. At the actor level, if the perceived
network is balanced, there is no ‘discomfort’ and no force impelling change. This leads to
a plausible explanation for the seemingly embarrassing results (that groups do not reach
balance) in a way that retrieves the FSBH by taking into account the cognitive dynamics
of actors. Moreover, the explanation is faithful to the origins of the original theory. Further
implications are considered in the next section.

7. Event sequences as generative mechanisms

Signed networks changed through time in the Sampson and Newcomb data sets as well
as in the simulation. These changes can be viewed as sequences of events as specific ties
change. As such, they are suggestive of more general mechanisms in the sense of Hedström
and Swedberg (1998).

7.1. Sampson monastery data

The partitions of the Sampson data for each time point are shown in Table 3. Inconsis-
tencies with balance are negative ties within plus-sets (diagonal blocks) and positive ties
between plus-sets (off diagonal blocks).

11 This differs from what would be expected in deterministic system causality models.
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Table 3
Optimal balance partition of affect ties at three time points
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The total count of inconsistencies through three time points12 T2, T3 andT4 are 20, 14
and 11, respectively. As noted, these figures are consistent with the FSBH and point to
movement towards balance. However,the change is neither simple nor smooth. Counting
null ties, there are 306 dyadic pairs. FromT2 to T3, 85 ties (25%) change and 231 (75%)
remain the same. There are 24 negative ties that change to a null tie. Of these changes
only one (John-Bosco to Gregory) reduces imbalance while 23 make no difference. Of the
41 null ties that change, 19 change to a negative and make no difference to the amount
of balance. Yet they can be viewed as making a difference as they are new negative ties
between plus-sets (which is where the negative ties should be located according to balance
theory). There are 22 null ties that change to positive ties. Of these, seven increase imbalance
(introduce positive ties between plus-sets) and 15 make no difference to the line index of
balance. However, these are new positive ties within plus-sets, which is exactly where they
should be according to balance theory. There are 20 positive ties that change fromT2 to
T3. Of the four that become negative, three reduce imbalance (by removing−1 ties within
plus-sets) and one that makes no difference. Of the 16 changes of positive ties to null ties,
nine reduce imbalance while seven changes make no difference. It should be noted, however,
that these are positive ties that are removed from within plus-sets. Overall, 20 of the 85 tie
changes have an impact on the amount of imbalance while 65 changes make no difference
to this index.

Another way of looking at the changes is to focus on the inconsistences with balance
that are present atT2. There are 20 inconsistencies. In the transition toT3, 13 of these
inconsistencies are removed while seven remain. However, another seven inconsistencies are
created so that the total number of inconsistencies atT3 is 14. The decrease in imbalance is a
netchange. Also, in terms of the line index, overwhelmingly, the changes that reduce balance
are positive or negative ties becoming null. Seldom do ties change sign. Thus, it seems the
line deletion version of the line index is more relevant than the line negation version.

For the transition fromT3 to T4 there are only 61 ties (20%) that change. There are 15
negative ties that become null and while one change reduces imbalance, the other 14 do
not. There are 13 null ties that become negative and while one of these changes increases
imbalance, the remaining changes make no difference. Of the 15 null ties that become
positive, two increase imbalance while 14 make no difference. There is one positive tie that
becomes negative and it increases imbalance. Of the 16 positive ties that become null, six
decrease imbalance and 10 make no difference. Overall, 50 of the tie changes fromT3 toT4
have no impact directly on the amount of imbalance while seven changes reduce imbalance
and four changes increase imbalance. These changes reduce the line index to 11, a net
change of 3. All of the changes can be viewed as sequences of events with the complication
that each actor in involved in many cycles and semi-cycles and these cycles may contain
contradictory ‘forces’ impelling changes as actors strive to reach balance (if, of course, the
FSBH is correct). Also, changes that do not have an impact on the line index of balance
directly can operate to change the dynamics for actors. When positive ties are added within
plus-set, they reinforce the internal cohesion within the plus-set even if their inclusion does
not appear to affect the amount of imbalance. Of course, when positive ties are removed

12 The labeling of these time points is taken from Sampson (1968). There was aT1 where only some of the actors
were present and aT5 when many of the actors had left the monastery.
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from plus-sets, they operate to reduce the internal cohesion of the plus-set. Similarly, when
negative ties are added in ways that link actors in different plus-sets, they reinforce the
balance processes while the removal of negative ties between plus-sets weakens them.

Why belabor this? Consider the three actorsp,q, ando linked by ties that are shown in the
lower panel of Fig. 1 (second triple from the left). Suppose further that each actor perceives
this triple in the same way. In order to reach balance,p has two options: change the positive
tie too to a negative tie or change the positive tie toq to a negative tie. Each change, alone, will
create a balanced triple (although the two triples will differ). Imagine the actor chooses the
first option. Suppose thato also surveys the scene and decides to change the negative tie toq

to a positive tie. If both changes are made, then the resulting triple is shown as the third triple
on the left in the lower panel of Fig. 1. This new triple isnot balanced—yet both actors acted
in a way that was designed to achieve balance. Sequences like this suggest why balance need
not be achieved quickly or directly. This gets more complicated when actors are located in
many triples (and longer semi-cycles) simultaneously. Of course, bothp ando could decide
to make ties null and so create a disconnected triple, one that is ‘vacuously’ balanced.

The simple example is premised on the assumption that each actor perceives the triple
in the same way. As described, tracking the changes is consistent with theP3 principle
of Stokman and Doreian (1997) where each actor is assumed (or allowed in a ‘model’) to
actseparately. Communication is assumed to be open and that each actor’s perception is
assumed to be veridical. However, given the simulation evidence, it is not hard to imagine
how these assumptions can be false (and so invoke Stokman and Doreian’sP2 principle).
Supposep changes its positive tie too to a negative tie but does not report this. The perception
thatp now has is the balanced triple that is second from the left in the top panel of Fig. 1. If
o changes its negative tie toq into a positive tie then its image of the triple is the all positive
(balanced) triple (first on the left in the top panel) of Fig. 1. Ifo remains silent about the
change, then each actor’s perception is a balanced triple. However, as noted, the two triples
differ and the information of each actor is local. If a researcher collected data after the two
changes, and the ties were reported accurately, the triplein the datawould be the imbalanced
triple that is third from the left in the lower panel of Fig. 1. With an ‘inaccurate’ triple
recorded in the data and actors having different perceptions of the triple, at best, balance
theoretic dynamics will be obscured. In the data, movement towards balance, if it exists, will
not be direct. There will be changes that increase imbalance, changes that reduce imbalance
and (many) changes that make no difference in the amount of measured imbalance.

7.2. Newcomb pseudo-fraternity data

The overall evidence for the Newcomb data suggests that imbalance decreased through
most of the study period. However, this interpretation has to be qualified by the results of
Doreian and Krackhardt (2001) with regard to the operation of multiple processes. Describ-
ing the event sequences in the Newcomb data is more complicated than in the Sampson
data. First, the overall structure changes through time as shown in Table 4 where the letters
label the actors as in Table 1. Each row reports a partition for each period. The partitions
by period are unique forT1–T3 (as a four cluster partition),T4, T6 throughT11, T14 andT15.
For T12 andT13 there is a second optimal partition that has the same form as the unique
partition ofT15.
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Table 4
Optimal balance partitions of affect ties through time

At the first time point,T1, the optimal partition has three clusters as shown in the top
panel of Table 1 and in the first row of Table 4. For the next two time points, P has become
a singleton in the presence of two large clusters. ForT4 andT5, O and J form a cluster of
size 2 and forT5, C has become a singleton. AtT6 a large cluster is evident with two pairs
of actors in distinct clusters plus J as a singleton. AtT7, the final structure has formed with
the one large cluster. There are two singletons each in a cluster and a pair of actors in a
cluster.

Not evident in Table 4 is the fate of these actors with regard to the receipt of positive
and negative ties. This feature of change is shown in Table 5 (which is taken from Doreian
and Krackhardt (2001)). The three actors (C, P, J) who do not belong to the large cluster
receive many negative ties by the end of Newcomb’s (1961) study period. They became
heavily disliked actors. However, the interpretation that they possess attributes that make
them disliked is not tenable when the receipt of positive ties is considered. At the first time
point, J receives four positive ties and there are eight actors receiving fewer positive ties.
Through time, J moved from receiving only two negative ties atT2 to being universally
disliked by the rest of the group members. Of course, it is possible that it takes time for
people to discern the real attributes of others. But it seems more likely that as the structure
of the group evolved into the form shown in Table 1, some of the attributes of the actors
co-evolved with the changing group structure. Actor P also started by receiving two negative
ties and then ended up receiving 12 negative ties. Another of the singletons in the evolved
structure, C, started out with three positive ties and five negative ties. In the last week the
count of negative ties received by C climbed to nine while his receipt of positive ties dropped
to zero. These three most disliked actors received 37 negative ties (over 72% of the total
of 51 negative ties). The receipt of negative ties is far more unequal than the receipt of
positive ties at all time points and is the most unequal at the final time point. Changes in
the distribution of the receipt of positive ties through time is far less dramatic.
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Table 5
Receipt of positive and negative ties

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Negative ties
A 5 4 4 3 2 1 1 0 0 1 1 0 0 0 0
B 4 4 1 3 4 1 0 0 1 0 1 0 1 0 0
C 5 5 4 5 5 6 9 10 10 9 9 9 9 8 9
D 2 1 1 1 0 1 0 0 0 1 0 0 0 0 0
E 3 1 0 2 1 1 1 0 1 1 1 0 0 2 3
F 4 4 4 4 4 3 1 3 3 3 1 1 2 1 1
G 2 4 5 4 2 0 0 0 1 0 1 1 2 1 0
H 8 7 8 8 6 2 1 1 0 3 2 4 0 2 2
I 1 1 2 0 1 1 1 1 2 0 0 0 0 0 0
J 2 8 8 11 12 13 13 15 14 11 13 11 13 14 16
K 3 1 0 2 0 2 1 1 1 1 0 2 2 2 1
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M 4 0 1 1 2 2 3 2 0 0 1 1 1 1 1
N 5 4 4 1 0 0 2 1 2 2 0 1 1 1 2
O 1 1 2 1 3 6 6 5 5 7 9 9 7 6 4
P 2 6 7 5 10 12 12 12 11 12 12 14 13 13 12
Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Positive ties
A 2 4 4 5 5 3 7 5 6 6 6 5 5 7 5
B 2 2 4 4 4 4 4 4 4 4 3 3 5 5 6
C 3 4 2 2 1 1 0 1 0 1 2 0 1 0 0
D 5 7 7 8 6 7 7 7 7 5 7 7 6 6 9
E 3 5 2 2 4 5 2 2 1 2 3 2 1 1 2
F 5 3 6 6 6 7 7 6 9 7 6 7 7 6 5
G 5 6 5 5 3 6 4 5 2 4 4 2 3 5 3
H 2 0 2 2 3 3 2 3 3 4 2 2 3 4 4
I 5 8 7 8 8 8 10 11 10 9 9 10 10 9 8
J 4 3 1 2 0 0 0 0 0 0 0 0 0 0 0
K 8 3 3 1 1 1 0 1 2 1 3 2 2 0 2
L 6 4 4 4 8 5 7 5 7 7 5 6 5 6 6
M 3 5 5 5 4 4 3 3 3 4 3 5 5 5 4
N 0 2 4 3 3 1 3 2 3 2 3 3 3 2 2
O 4 2 2 1 1 1 0 1 0 0 1 1 1 1 0
P 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1
Q 10 9 10 9 10 11 11 11 10 11 10 12 10 11 11

Another feature of the change through time is shown in Table 6 which reports the number
of ties that change (including null ‘ties’) in each of the 14 transitions between successive
time points. Also reported is the imbalance measure after each transition together with
the net change of imbalance. There are many more tie changes than is reflected in the
change in imbalance. While some tie changes reduce imbalance and other changes increase
imbalance, most of the changes do not affect imbalance, as was the case with the Sampson
data. Nor does the measure of imbalance monotonically decrease through time. In essence,
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Table 6
Changes in ties and net imbalance

Transition Ties changing Net change imbalance New imbalance

1 85 −2 28
2 50 −3 25
3 64 −1 24
4 50 2 26
5 66 −4 22
6 66 0 22
7 50 1 23
8 28 −1 22
9 42 1 23

10 48 −3 20
11 50 0 20
12 36 0 20
13 48 −1 19
14 46 1 20

the measure of imbalance stopped dropping at week 10 even though ties were changing.
Clearly there were false starts and ‘mistakes’ in efforts to reduce imbalance. If some balance
process mechanisms were inoperative and if there were other mechanisms at work, they
confound the movement toward balance.

7.3. Further reflections on the simulation results

In contrast to the empirical situations where the actual mechanisms at work are unknown
and efforts are made to identify some of them, in the simulations of Hummon and Doreian
(2002), the mechanisms are known by design. Each actor strives to minimize imbalance and
continues to do so until balance is reached or no further change towards balance is possible.
As noted, there were outcomes where the ‘group structure’ was imbalanced while actor
images of the group were balanced. Thus, having groups not reaching perfect balance can
be consistent with the FSBH because Heider’s (1946) formulation concerned a mechanism
inside the minds of actors as they sought to minimize ‘discomfort’.

Another outcome of the simulations was a by-product in the form of a transcript listing
thesequencesof acts as the balance dynamic unfolded. While we have not looked at them in
a systematic fashion yet, it is evident that there arevery long sequences of actions and that
the number of actions increases with the size of the group. The increase is not linear with
the group size and depends also in the initial contentiousness of the groups. One reasonable
conclusion is that balance theory processes take a long time to play out as actors strive to
reach balance. And this conclusion prompts the suggestion that most empirical studies of
structural balance in social groups are tooshort.

Finally, the simulation of Hummon and Doreian (2002) was more of an exercise in
theory that specified structural balance as a multiple-level process. Most empirical studies
of structural balance simply forget the processes operating in the minds of actors. If balance
does operate, it operates both in the minds of actors and at the group level. Having one
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process (or set of processes) without the other is an impediment to obtaining a general
understanding of structural balance theoretic processes.

8. Discussion

This paper began, in the context of network evolution, with a pair of conflicting assess-
ments of structural balance theory. Opp (1984) saw failure for the theory and a correspond-
ing loss of interest by social psychologists and sociologists. Davis (1979) saw the theory
as successful. Of course, the criteria used in the two assessments were different. For Opp,
there was a long line of inconclusive evidence and contradictory results. For Davis, the
formalization of balance theory provided the foundation for an elegant result that linked the
micro-foundations of actor level processes to a group (macro-level) structure. The theory
was plausible and there was some evidence supporting it. My argument here is that as far as
Opp and Davis go, they are correct in their conclusions and, while at odds, these conclusions
can be reconciled.

It is useful to think of structural balance as one (of many) approaches to the evolution of
social networks. The ideas of Stokman and Doreian (1997) suggest principles whose inclu-
sion in the study of balance theory have empirical payoff. When the actor level processes are
excluded—as in both the Sampson and Newcomb studies—the study of balance theory is
impoverished. True, leaving them out is consistent withP3 as the model is certainly simple.
However, such models are too simple and Stokman and Doreian suggest that less simple
models be considered if the simple model fails or appears to fail. ImplementingP1 means
that actor processes can no longer be left out safely if a more comprehensive understanding
is sought. Actors have goals and it is reasonable to bring them into a model. The Hummon
and Doreian’s (2002) simulations suggest a way of doing this and suggest that it is necessary
to incorporate actor-level processes.

The simulation results also suggest a way in which actors can come to have local informa-
tion that is not veridical with respect to the group structure and how they may have images
that are inconsistent with each other. The mechanism for creating this was communication.
By having different modes of communication, the distribution of local information held by
actors was changed. As a result, different actors came to have different amounts of both
accurate and inaccurate local information. Social life may be more complicated. In the sim-
ulations each actor communicated in the same fashion (with a single run) and this made it
possible to study the impact that communication modes have on the simulated outcomes.
It is likely that different actors communicate in different ways. While this change will be
incorporated into future simulations, the empirical study of balance with be more difficult
if these ‘style’ differences have to be considered.

The results of Doreian and Krackhardt (2001) point to two serious problems in the
empirical study of balance theory. One is that the ‘single’ balance theoretic process must
be considered as a bundle of mini-balance processes (or mechanisms) and that not all of
them need be operative in a given empirical context. The second difficulty is that multiple
processes in addition to balance may be at work. Just as differential popularity may be
confused with transitivity (Feld and Elmore, 1982) so can differential liking and disliking
be confused with structural balance. While such considerations can be incorporated into
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the kind of simulations done by Hummon and Doreian, studying competing mechanisms
empirically will be difficult. This is made more complicated, at least in principle, by the
Doreian et al. (1996) results that reciprocity, transitivity and balance appear to have different
time scales.

This last idea makes me pessimistic in the short run with regard to the construction of
models in the form of systems of equations. This implies that we may not be ready, at this
time, for the construction of adequate ‘system causality’ models. I suspect that the role of
‘statistical causal’ modeling is limited and may be confined to estimating system causality
models once they are formulated. If we are not ready to build system causality models and
estimate them, we have ‘mechanism causality’ models and the generation of sequences of
events to consider together with ‘algorithmic causality’ (that was the core of the simulation
models discussed).

Empirically, we are likely to be involved in the observation of sequences of events. The
analyses of the Sampson and the Newcomb data sets, as discussed, were very limited. But
they hint strongly that the sequences of events will not be coherent in the form of simple
direct movements that are easily tracked and comprehended. Even within the simulations
and the incorporation of only structural balance mechanisms, movement towards balance
was not assured, at least over some time periods. If there are multiple processes at work,
observed event sequences will reflect the operation of these processes—and these processes
may have different priorities for the actors as well as different time scales.

A detailed examination of the sequences of events generated in the simulations will
provide some guidance in the construction of narratives of event sequences as advocated by
Abell (1987). While potentially confusing, studying event sequences seems the most useful
way of discerning the operation of balance theoretic processes. With that knowledge gained,
generalized mechanisms and their operation can be elaborated. We may then be in a position
to specify system causality models and estimate them. But understanding event sequences
and the operation of algorithmic rules may be the understanding of network evolution that
we seek and so limit system causality models as summary devices (that may still be useful
for understanding dynamics).
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