Hierarhično združevanje v skupine v Pajku

Postopek je sestavljen iz dveh delov:

- izračun matrike različnosti
- hierarhično združevanje v skupine glede na dobljeno matriko različnosti

Predno poženemo postopek hierarhičnega združevanja, definiramo še množico enot nad katerimi želimo pognati postopek, npr. s <u>Cluster/Create Complete Cluster</u> zahtevamo, da se združevanje izvrši nad vsemi enotami.

Poženemo Operations/Dissimilarity*/Network Based in izberemo

- d1/All če zelimo omrežje obravnavati kot dvojiško (0/1), ali
- Corrected Euclidean ali Corrected Manhattan če želimo pri izračuno različnosti upoštevati tudi vrednosti na povezavah, v tem primeru moramo vnesti še vrednost parametra *p* (0, 1, ali 2). Parameter *p* pove kako obravnavati *diagonalo* in *neposredno povezavo* med enotama.

Poleg tega vnesemo še ime datoteke, kamor naj se shrani slika dendrograma v obliki EPS. Če na tem mestu pritisnemo *Cancel*, bo prišlo samo do izračuna matrike različnosti (postopek hierarhičnega združevanja se ne bo izvršil).

Kot rezultate hierarhičnega združevanja v Pajku dobimo:

- Matriko različnosti.
- Sliko dendrograma v obliki EPS.
- Permutacijo točk glede na dendrogram, ki jo lahko uporabimo za prikaz preurejene matrike v obliki EPS (File/Network/Export Matrix to EPS/Using Permutation).
- Hierarhijo, ki predstavlja hierarhično združevanje. Hierarhijo lahko uporabimo za nadaljnjo analizo ali prikaz omrežja:
 - Preverimo, da je <u>Edit/Show Subtree</u> izbrano (ob izbiri vozlišča v drevesu naj se pokažejo vse točke v ustreznem poddrevesu).
 - Ko se odločimo, katera razvrstitev točk v skupine je za nas najbolj ustrezna (odločimo se na osnovi dendrograma), 'zapremo' ustrezna vozlišča v hierarhiji, tako da pritiskamo <u>Edit/Change Type</u> ali <u>Ctrl+T</u> toliko časa, da se pri izbranem vozlišču izpiše Close.

- Pretvorimo hierarhijo v razbitje (Hierarchy/Make Partition).
- Dobljeno razbitje lahko prikažemo na sliki omrežja z barvami <u>Draw/Draw-Partition</u>, ali izpišemo preurejeno matriko

File/Network/Export Matrix to EPS/Using Permutation s črtami med skupinami.

Privzeta metoda združevanja je Wardova metoda. Če želimo izbrati drugo metodo, jo izberemo v Net/Hierarchical Decomposition/Clustering/Options

Bločno modeliranje v Pajku

V Pajku lahko bločno modeliranje poženemo na dva načina:

- začetek s slučajnim razbitjem v dano število razredov Operations/Blockmodeling*/Random Start
- optimizacija izbranega razbitja (npr. razbitja dobljenega s postopkom hierarhičnega združevanja)
 Operations/Blockmodeling*/Optimize Partition

Izbrati moramo še

- enkovrednosti *strukturna* ali *regularna*. Definiramo lahko tudi svoj posplošen bločni model (*3–Define*). V tem primeru moramo za vsako celico v bločnem modelu določiti kateri tipi blokov so dovoljeni in kakšna je kazen (*penalty*) za vsak blok. Tako definiran model lahko shranimo (<u>Save as MDL File</u>) in naložimo spet kasneje (<u>Load from MDL File</u>).
- število ponovitev
- število skupin

Ko so vse stvari ustrezno nastavljene, pritisnemo Run.

V primeru, ko optimiziramo dano razbitje, nam števila razredov ni potrebno podati (ker je določeno že z začetnim razbitjem), pravtako ni potreben vnos števila ponovitev.

Rezultat bločnega modeliranja so razbitja z najmanjšo vrednostjo kriterijske funkcije (eno ali več razbitij).

Če želimo prikazati preurejeno matriko (s črtami med skupinami), moramo najprej pretvoriti razbitje v ustrezno permutacijo z uporabo ukaza <u>Partition/Make Permutation</u>.